dfm_ED1

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5402
  • F1-score: 0.9344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 69 0.3134 0.9098
No log 2.0 138 0.4634 0.8843
No log 3.0 207 0.5135 0.9097
No log 4.0 276 0.4919 0.9179
No log 5.0 345 0.6858 0.8768
No log 6.0 414 0.8026 0.8843
No log 7.0 483 0.5402 0.9344
0.156 8.0 552 0.6149 0.9180
0.156 9.0 621 0.6310 0.9180
0.156 10.0 690 0.6423 0.9180
0.156 11.0 759 0.6514 0.9180
0.156 12.0 828 0.6594 0.9180
0.156 13.0 897 0.6656 0.9180
0.156 14.0 966 0.6712 0.9180
0.0 15.0 1035 0.6755 0.9180
0.0 16.0 1104 0.6792 0.9180
0.0 17.0 1173 0.6824 0.9180
0.0 18.0 1242 0.6844 0.9180
0.0 19.0 1311 0.6856 0.9180
0.0 20.0 1380 0.6861 0.9180

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
20
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/dfm_ED2

Finetuned
(5)
this model