snacks_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4458
  • Accuracy: 0.8942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 303 0.7200 0.8649
1.0168 2.0 606 0.5468 0.8723
1.0168 3.0 909 0.4612 0.8848
0.3765 4.0 1212 0.5239 0.8660
0.2585 5.0 1515 0.4193 0.8890
0.2585 6.0 1818 0.4571 0.8775
0.2038 7.0 2121 0.4538 0.8838
0.2038 8.0 2424 0.4508 0.8880
0.1827 9.0 2727 0.4748 0.8880
0.1568 10.0 3030 0.4928 0.8764
0.1568 11.0 3333 0.3684 0.9099
0.1305 12.0 3636 0.4205 0.8984
0.1305 13.0 3939 0.4537 0.8963

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for yangswei/snacks_classification

Finetuned
(1854)
this model

Dataset used to train yangswei/snacks_classification

Spaces using yangswei/snacks_classification 2