llama2-7b-dpo-lora-20231129-52
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6869
- Rewards/chosen: 0.0289
- Rewards/rejected: 0.0137
- Rewards/accuracies: 0.5675
- Rewards/margins: 0.0152
- Logps/rejected: -288.6960
- Logps/chosen: -359.9693
- Logits/rejected: -0.3198
- Logits/chosen: -0.1736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6911 | 1.0 | 121 | 0.6918 | 0.0084 | 0.0083 | 0.5238 | 0.0001 | -288.7494 | -360.1742 | -0.3206 | -0.1740 |
0.6892 | 2.0 | 242 | 0.6888 | 0.0170 | 0.0139 | 0.4841 | 0.0032 | -288.6942 | -360.0880 | -0.3202 | -0.1740 |
0.6867 | 3.0 | 363 | 0.6869 | 0.0289 | 0.0137 | 0.5675 | 0.0152 | -288.6960 | -359.9693 | -0.3198 | -0.1736 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.1
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for xz-huggingface-0/llama2-7b-dpo-lora-20231129-52
Base model
meta-llama/Llama-2-7b-hf