onebitquantized's picture
Update README.md
593d3ff verified
metadata
library_name: transformers
license: gemma
base_model:
  - google/gemma-2-9b-it

This model has been xMADified!

This repository contains google/gemma-2-9b-it quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.

Why should I use this model?

  1. Accuracy: This xMADified model is the best quantized version of the google/gemma-2-9b-it model (8 GB only). See Table 1 below for model quality benchmarks.

  2. Memory-efficiency: The full-precision model is around 18.5 GB, while this xMADified model is only around 8 GB, making it feasible to run on a 12 GB GPU.

  3. Fine-tuning: These models are fine-tunable over the same reduced (12 GB GPU) hardware in mere 3-clicks. Watch our product demo here

Table 1: xMAD vs. Hugging Quants

Model MMLU Arc Challenge Arc Easy LAMBADA Standard LAMBADA OpenAI PIQA WinoGrande
xmadai/gemma-2-9b-it-xMADai-INT4 (this model) 71.17 62.37 85.61 70.60 72.15 81.50 75.06
hugging-quants/gemma-2-9b-it-AWQ-INT4 71.04 61.77 85.14 69.16 70.68 80.41 75.06

How to Run Model

Loading the model checkpoint of this xMADified model requires around 8 GB of VRAM. Hence it can be efficiently run on a 12 GB GPU.

Package prerequisites:

  1. Run the following *commands to install the required packages.
pip install torch==2.4.0  # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate optimum
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/AutoGPTQ.git@v0.7.1"

Sample Inference Code

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "xmadai/gemma-2-9b-it-xMADai-INT4"
prompt = [
    {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
    {"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
inputs = tokenizer.apply_chat_template(
    prompt,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt",
    return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_quantized(
    model_id,
    device_map='auto',
    trust_remote_code=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

Citation

If you found this model useful, please cite our research paper.

@article{zhang2024leanquant,
  title={LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid},
  author={Zhang, Tianyi and Shrivastava, Anshumali},
  journal={arXiv preprint arXiv:2407.10032},
  year={2024},
  url={https://arxiv.org/abs/2407.10032},
}

Contact Us

For additional xMADified models, access to fine-tuning, and general questions, please contact us at support@xmad.ai and join our waiting list.