test_trainer
This model is a fine-tuned version of cointegrated/rubert-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7461
- Accuracy: 0.8310
How to use:
# themes = ['баги', 'открытие', 'баланс', 'рейтинг', 'ревизия', 'другое']
from transformers import AutoTokenizer, AutoModel
import torch
model_name = 'wyluilipe/wb-themes-classification'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=i+1)
text = "программа не работает"
encoded_input = tokenizer(text, return_tensors='pt')
with torch.no_grad():
output = model(**encoded_input)
probabilities = torch.nn.functional.softmax(output.logits, dim=-1)
predicted_class = torch.argmax(probabilities).item()
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 60 | 0.7383 | 0.8404 |
No log | 2.0 | 120 | 0.8743 | 0.7840 |
No log | 3.0 | 180 | 0.7312 | 0.8169 |
No log | 4.0 | 240 | 0.6733 | 0.8404 |
No log | 5.0 | 300 | 0.7612 | 0.7981 |
No log | 6.0 | 360 | 0.7671 | 0.8122 |
No log | 7.0 | 420 | 0.7306 | 0.8263 |
No log | 8.0 | 480 | 0.7523 | 0.8263 |
0.1118 | 9.0 | 540 | 0.7645 | 0.8263 |
0.1118 | 10.0 | 600 | 0.7461 | 0.8310 |
Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for wyluilipe/wb-themes-classification
Base model
cointegrated/rubert-tiny