Mamba Finacial Headline Sentiment
Score 0.84 on accuracy for the finacial phrasebank dataset. A completely huggingface capitable implementation of sequence classification with mamba using: https://github.com/getorca/mamba_for_sequence_classification.
Inference:
from transformers import pipeline
model_path = 'winddude/mamba_finacial_phrasebank_sentiment'
classifier = pipeline("text-classification", model=model_path, trust_remote_code=True)
text = "Finnish retail software developer Aldata Solution Oyj reported a net loss of 11.7 mln euro $ 17.2 mln for 2007 versus a net profit of 2.5 mln euro $ 3.7 mln for 2006 ."
classifier(text)
gives:
[{'label': 'NEGATIVE', 'score': 0.8793253302574158}]
- Downloads last month
- 33
Inference API (serverless) does not yet support model repos that contain custom code.