Edit model card

wav2vec2_common_voice_accents_indian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 48
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 384
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.5186 1.28 400 0.6937
0.3485 2.56 800 0.2323
0.2229 3.83 1200 0.2195
0.1877 5.11 1600 0.2147
0.1618 6.39 2000 0.2058
0.1434 7.67 2400 0.2077
0.132 8.95 2800 0.1995
0.1223 10.22 3200 0.2146
0.1153 11.5 3600 0.2117
0.1061 12.78 4000 0.2071
0.1003 14.06 4400 0.2219
0.0949 15.34 4800 0.2204
0.0889 16.61 5200 0.2162
0.0824 17.89 5600 0.2243
0.0784 19.17 6000 0.2323
0.0702 20.45 6400 0.2325
0.0665 21.73 6800 0.2334
0.0626 23.0 7200 0.2411
0.058 24.28 7600 0.2473
0.054 25.56 8000 0.2591
0.0506 26.84 8400 0.2577
0.0484 28.12 8800 0.2633
0.0453 29.39 9200 0.2692

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train willcai/wav2vec2_common_voice_accents_indian