distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0851
- Accuracy: {'accuracy': 0.883}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.5877 | {'accuracy': 0.832} |
0.4308 | 2.0 | 500 | 0.4432 | {'accuracy': 0.885} |
0.4308 | 3.0 | 750 | 0.6005 | {'accuracy': 0.872} |
0.1638 | 4.0 | 1000 | 0.6922 | {'accuracy': 0.88} |
0.1638 | 5.0 | 1250 | 0.8969 | {'accuracy': 0.884} |
0.0465 | 6.0 | 1500 | 0.9943 | {'accuracy': 0.877} |
0.0465 | 7.0 | 1750 | 1.1570 | {'accuracy': 0.878} |
0.0117 | 8.0 | 2000 | 1.1183 | {'accuracy': 0.885} |
0.0117 | 9.0 | 2250 | 1.1008 | {'accuracy': 0.883} |
0.0102 | 10.0 | 2500 | 1.0851 | {'accuracy': 0.883} |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.1+rocm6.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for wickes1/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased