finetuned-marktextepoch-n800

This model is a fine-tuned version of leokai/finetuned-marktextepoch-n600 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
0.287 1.0 1606 2.8473
0.2913 2.0 3212 2.8147
0.2865 3.0 4818 2.8809
0.2947 4.0 6424 2.8510
0.2988 5.0 8030 2.8883
0.3109 6.0 9636 2.9016
0.309 7.0 11242 2.8869
0.301 8.0 12848 2.9201
0.303 9.0 14454 2.8902
0.3156 10.0 16060 2.8888
0.3132 11.0 17666 2.8777
0.3089 12.0 19272 2.9429
0.3146 13.0 20878 2.9131
0.3297 14.0 22484 2.8983
0.3214 15.0 24090 2.9321
0.3095 16.0 25696 2.9436
0.3171 17.0 27302 2.9163
0.308 18.0 28908 2.9545
0.3174 19.0 30514 2.9161
0.3163 20.0 32120 2.9081
0.3191 21.0 33726 2.9465
0.3254 22.0 35332 2.9404
0.3168 23.0 36938 2.9054
0.33 24.0 38544 2.9274
0.3115 25.0 40150 2.9277
0.3125 26.0 41756 2.9627
0.3246 27.0 43362 2.9583
0.3133 28.0 44968 2.9433
0.3221 29.0 46574 2.9747
0.3185 30.0 48180 2.9793
0.3123 31.0 49786 2.9170
0.3169 32.0 51392 2.9711
0.3175 33.0 52998 2.9457
0.3253 34.0 54604 2.9518
0.3163 35.0 56210 2.9218
0.3113 36.0 57816 2.9524
0.3208 37.0 59422 2.9570
0.3197 38.0 61028 2.9439
0.3213 39.0 62634 2.9416
0.3259 40.0 64240 2.9884
0.3216 41.0 65846 2.9641
0.3154 42.0 67452 2.9797
0.3258 43.0 69058 2.9813
0.3236 44.0 70664 2.9700
0.3134 45.0 72270 2.9881
0.3219 46.0 73876 2.9982
0.3243 47.0 75482 2.9702
0.3246 48.0 77088 2.9706
0.3245 49.0 78694 2.9965
0.3124 50.0 80300 2.9893
0.3172 51.0 81906 2.9859
0.3118 52.0 83512 2.9707
0.3187 53.0 85118 2.9771
0.3256 54.0 86724 2.9827
0.3222 55.0 88330 2.9776
0.3212 56.0 89936 2.9607
0.3215 57.0 91542 2.9664
0.3266 58.0 93148 2.9638
0.3209 59.0 94754 2.9842
0.333 60.0 96360 3.0053
0.3202 61.0 97966 2.9833
0.3155 62.0 99572 2.9952
0.32 63.0 101178 2.9737
0.3291 64.0 102784 2.9804
0.3259 65.0 104390 2.9767
0.32 66.0 105996 2.9610
0.3208 67.0 107602 3.0111
0.3277 68.0 109208 2.9588
0.337 69.0 110814 2.9920
0.3296 70.0 112420 2.9466
0.3197 71.0 114026 2.9619
0.323 72.0 115632 2.9733
0.3247 73.0 117238 2.9787
0.3246 74.0 118844 2.9383
0.3203 75.0 120450 3.0123
0.3272 76.0 122056 3.0284
0.3407 77.0 123662 3.0047
0.3312 78.0 125268 2.9465
0.3262 79.0 126874 2.9805
0.3221 80.0 128480 2.9713
0.3246 81.0 130086 2.9869
0.3208 82.0 131692 2.9970
0.3196 83.0 133298 2.9864
0.3311 84.0 134904 3.0080
0.3235 85.0 136510 2.9739
0.3251 86.0 138116 2.9749
0.3248 87.0 139722 2.9588
0.3342 88.0 141328 2.9509
0.3456 89.0 142934 2.9713
0.3337 90.0 144540 2.9968
0.323 91.0 146146 2.9790
0.3202 92.0 147752 2.9919
0.3308 93.0 149358 3.0100
0.3232 94.0 150964 2.9873
0.3356 95.0 152570 2.9786
0.3282 96.0 154176 2.9965
0.3404 97.0 155782 3.0198
0.3212 98.0 157388 2.9713
0.3307 99.0 158994 2.9979
0.337 100.0 160600 2.9805
0.3354 101.0 162206 2.9759
0.3252 102.0 163812 2.9810
0.3324 103.0 165418 2.9433
0.3278 104.0 167024 3.0079
0.3419 105.0 168630 2.9576
0.343 106.0 170236 2.9610
0.3294 107.0 171842 2.9147
0.3271 108.0 173448 2.9740
0.3315 109.0 175054 2.9736
0.3413 110.0 176660 2.9819
0.3344 111.0 178266 2.9783
0.3399 112.0 179872 2.9836
0.3314 113.0 181478 2.9605
0.3344 114.0 183084 2.9629
0.3346 115.0 184690 2.9535
0.3324 116.0 186296 2.9139
0.3493 117.0 187902 2.9383
0.341 118.0 189508 2.9547
0.3414 119.0 191114 2.9592
0.335 120.0 192720 2.9822
0.3423 121.0 194326 2.9498
0.3415 122.0 195932 2.9371
0.3557 123.0 197538 2.9625
0.3544 124.0 199144 2.9637
0.3528 125.0 200750 2.9881
0.3567 126.0 202356 2.9576
0.3336 127.0 203962 2.9427
0.3282 128.0 205568 2.9659
0.3605 129.0 207174 2.9555
0.3436 130.0 208780 2.9590
0.3489 131.0 210386 2.9250
0.3604 132.0 211992 2.9411
0.347 133.0 213598 2.9093
0.3623 134.0 215204 2.9324
0.3449 135.0 216810 2.9564
0.3459 136.0 218416 2.9254
0.3519 137.0 220022 2.9512
0.3499 138.0 221628 2.9411
0.3588 139.0 223234 2.8994
0.3657 140.0 224840 2.9372
0.3564 141.0 226446 2.9237
0.3445 142.0 228052 2.9380
0.359 143.0 229658 2.9547
0.3495 144.0 231264 2.9238
0.3545 145.0 232870 2.9436
0.3523 146.0 234476 2.9390
0.3785 147.0 236082 2.8861
0.356 148.0 237688 2.9239
0.3624 149.0 239294 2.8960
0.3619 150.0 240900 2.9224
0.3607 151.0 242506 2.9155
0.3585 152.0 244112 2.9144
0.3735 153.0 245718 2.8805
0.3534 154.0 247324 2.9095
0.3667 155.0 248930 2.8888
0.3705 156.0 250536 2.9049
0.3711 157.0 252142 2.8801
0.3633 158.0 253748 2.8874
0.36 159.0 255354 2.8984
0.3752 160.0 256960 2.9004
0.3717 161.0 258566 2.8577
0.3742 162.0 260172 2.8772
0.3815 163.0 261778 2.9183
0.3695 164.0 263384 2.9144
0.3809 165.0 264990 2.8968
0.3813 166.0 266596 2.8690
0.3803 167.0 268202 2.8748
0.3813 168.0 269808 2.8676
0.3782 169.0 271414 2.8473
0.3848 170.0 273020 2.8816
0.371 171.0 274626 2.8929
0.3843 172.0 276232 2.8858
0.381 173.0 277838 2.8590
0.3889 174.0 279444 2.8484
0.3814 175.0 281050 2.8634
0.3865 176.0 282656 2.8713
0.3968 177.0 284262 2.8490
0.4007 178.0 285868 2.8497
0.3805 179.0 287474 2.8435
0.3903 180.0 289080 2.8582
0.392 181.0 290686 2.8473
0.3926 182.0 292292 2.8584
0.3921 183.0 293898 2.8850
0.3958 184.0 295504 2.8532
0.3858 185.0 297110 2.8568
0.4002 186.0 298716 2.7939
0.3999 187.0 300322 2.8548
0.3932 188.0 301928 2.8598
0.4005 189.0 303534 2.8390
0.4048 190.0 305140 2.8336
0.3983 191.0 306746 2.8286
0.394 192.0 308352 2.8437
0.3989 193.0 309958 2.8594
0.3966 194.0 311564 2.8541
0.397 195.0 313170 2.8697
0.4007 196.0 314776 2.8549
0.3978 197.0 316382 2.8815
0.4005 198.0 317988 2.8565
0.4025 199.0 319594 2.8451
0.4078 200.0 321200 2.8433

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.