Model Card for Model ID

在llama-2-13b上使用huangyt/FINETUNE2資料集進行訓練,採用與platypus相近參數

Fine-Tuning Information

  • GPU: RTX4090 (single core / 24564MiB)
  • base model: meta-llama/Llama-2-13b-hf
  • dataset: huangyt/FINETUNE2 (共約3w筆訓練集)
  • peft_type: LoRA
  • lora_rank: 16
  • lora alpha: 8
  • lora dropout: 0.05
  • lora_target: gate_proj, up_proj, down_proj
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 8
  • learning_rate : 4e-4
  • epoch: 1
  • batch size: 8
  • microbatch size: 4
  • warmup steps: 100
  • weight decay: cosine
  • cutoff length: 2048
  • precision: bf16
  • group_by_length: True
  • load_in_8bit: True

Fine-Tuning Detail

  • train_loss: 0.0823
  • train_runtime: 02:40:01

Evaluation

  • 評估結果來自HuggingFaceH4/open_llm_leaderboard
  • 與Llama-2-13b比較4種Benchmark,包含ARCHellaSwagMMLUTruthfulQA
Model Average ARC HellaSwag MMLU TruthfulQA
meta-llama/Llama-2-13b-hf 56.9 58.11 80.97 54.34 34.17
meta-llama/Llama-2-13b-chat-hf 59.93 59.04 81.94 54.64 44.12
CHIH-HUNG/llama-2-13b-FINETUNE2_3w 58.24 58.62 82.32 54.25 38.17
CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj 58.49 59.73 81.06 54.53 38.64
CHIH-HUNG/llama-2-13b-FINETUNE2_3w-q_k_v_o_proj 58.21 58.53 82.47 53.9 37.92
CHIH-HUNG/llama-2-13b-FINETUNE2_3w-gate_up_down_proj 58.81 57.42 82.42 55.57 39.19
wei123602/llama2-13b-fintune2 wait wait wait wait wait
Downloads last month
1,988
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train wei123602/llama2-13b-fintune2

Spaces using wei123602/llama2-13b-fintune2 6