license: apache-2.0
language:
- ja
- en
library_name: transformers
tags:
- japanese
Tanuki-8x8B-dpo-v1.0
モデルについて
Tanuki-8x8Bは、フルスクラッチで約1.7Tトークン事前学習を行った8x8Bパラメータ(総パラメータ約47B、アクティブパラメータ約13B)の大規模言語モデルです。
Tanuki-8x8B-dpo-v1.0は、SFTおよびDPOにより対話用に調整されています。
より詳細な情報についてはブログ記事を参照してください。
GENIAC 松尾研 LLM開発プロジェクトのもと、一般公募により集まった有志の参加者(企業所属、学生、研究者等)が開発を実施しました。
量子化モデル
AWQ 4bit量子化 GPTQ 4bit量子化 GPTQ 8bit量子化 GGUF量子化*
*GGUF版は性能低下が発生している可能性があり、非推奨
使い方
本モデルの推論にはflash attentionが必須です。以下のようにインストールしてください。
pip install --no-build-isolation flash_attn
以下はHuggingFace Transformersを使った推論のサンプルコードです。
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("weblab-GENIAC/Tanuki-8x8B-dpo-v1.0", device_map="auto", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("weblab-GENIAC/Tanuki-8x8B-dpo-v1.0")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
{"role": "user", "content": "たぬきに純粋理性批判は理解できますか?"}
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
output_ids = model.generate(input_ids,
max_new_tokens=1024,
temperature=0.5,
streamer=streamer)
また、vLLMを使って推論をする場合は独自アーキテクチャへの対応が必要となります。こちらから改変済みvLLMを以下のようにビルドしてご利用ください。
git clone https://github.com/team-hatakeyama-phase2/vllm.git
cd vllm
LD_LIBRARY_PATH="" MAX_JOBS=16 pip install -e .
以下はvLLMを使った推論のサンプルコードです。
from time import time
from vllm import LLM, SamplingParams
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
# model_name = "team-hatakeyama-phase2/Tanuki-8x8B-dpo-v1.0-AWQ"
# model_name = "team-hatakeyama-phase2/Tanuki-8x8B-dpo-v1.0-GPTQ-4bit"
# model_name = "team-hatakeyama-phase2/Tanuki-8x8B-dpo-v1.0-GPTQ-8bit"
# vllm = LLM(model_name, trust_remote_code=True, tensor_parallel_size=1) # 1GPUの場合
vllm = LLM(model_name, trust_remote_code=True, tensor_parallel_size=2) # 2GPUを使う場合
tokenizer = vllm.get_tokenizer()
messages = [
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
{"role": "user", "content": "たぬきに純粋理性批判は理解できますか?"}
]
inputs_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(f"inputs_text: {inputs_text}")
sampling_params = SamplingParams(temperature=0.0, max_tokens=1024, seed=1, repetition_penalty=1.1)
start = time()
outputs = vllm.generate(inputs_text, sampling_params=sampling_params, use_tqdm=False)
end = time()
outputs_text = outputs[0].outputs[0].text
print(f"outputs_text: {outputs_text}")
print(f"Elapsed time: {(end - start):.4f} sec.")
プロンプト形式
Tanuki-8x8B-dpo-v1.0は日本語版Alpacaのプロンプト形式を利用します。
- シングルターン
<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。 ### 指示: たぬきに純粋理性批判は理解できますか? ### 応答:
- マルチターン
<s>以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。 ### 指示: {1ターン目の入力} ### 応答: {1ターン目の応答}</s> ### 指示: {2ターン目の入力} ### 応答:
なお、本モデルはデフォルトのシステムプロンプトである「以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。」以外を学習していないため、このシステムプロンプトの使用を推奨します。タスクの詳細はユーザープロンプトに記述してください。
ベンチマーク
人手評価
Chatbot Arenaを模したシステムを作成し、人手によるブラインドテストを実施しました。
(詳細はこちら)
評価結果(約2000件)を後日全て公開します。
Japanese MT-Bench
GPT-4による評価 (gpt-4-0613、平均スコア算出においてスコア-1は除外)
Tanuki-8B-dpo-v1.0 | Tanuki-8x8B-dpo-v1.0 | |
---|---|---|
平均スコア | 7.24 | 7.96 |
coding | 5.4 | 6.75 |
extraction | 6.65 | 6.90 |
humanities | 9.1 | 9.3 |
math | 3.9 | 5.75 |
reasoning | 5.75 | 7.35 |
roleplay | 8.75 | 8.95 |
stem | 9.35 | 9.40 |
writing | 9.05 | 8.85 |
開発メンバー
畠山 歓、Rumi Nakagawa、takagi、Toshio Nishida、Hideaki Hayashi、p1atdev、Daichi Kohmoto、Nishijima、Chattso-GPT、西井康隆、Jie Zeng、加藤純、堀江吏将、Kazutaka Nishimae、Jinsei Shiraishi、川村 正春、山口 裕輝、Nishi、Esty、Minami Someya、林寛太 (Kanta Hayashi)、菊池満帆、岩田 兼太朗、、江國翔太、佐野敏幸、K. Nishizawa、Susumu Ota、Issei Fujimoto、永原恒治、hiroaki shioya、masaki okamura、y_morinaga、川村 正春、熊田匡仁、Mさん、asaoka_tadashi、Yuki Namiuchi、片上 舜、河越 淳、Issei Fujimoto、Yukie Kawano、Chihiro HIGUCHI、Ryota Mitsuhashi、Chihiro Arata、Atsushi Saito、Kunihiro Watanabe