upernet-convnext-base-AIData
This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0003
- Mean Iou: 0.8976
- Mean Accuracy: 0.9402
- Overall Accuracy: 0.9999
- Per Category Iou: [0.9999419319790964, 0.7952921395544347]
- Per Category Accuracy: [0.9999725748376043, 0.8804094927873429]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.0005 | 12.5 | 200 | 0.0003 | 0.8981 | 0.9393 | 0.9999 | [0.9999424089512944, 0.7962884858709405] | [0.9999735287562963, 0.8785481619357841] |
0.0005 | 25.0 | 400 | 0.0003 | 0.8908 | 0.9232 | 0.9999 | [0.9999394285464914, 0.7816931671680275] | [0.9999787753091024, 0.8464402047463937] |
0.0005 | 37.5 | 600 | 0.0003 | 0.8969 | 0.9390 | 0.9999 | [0.9999415743053811, 0.7938578039545646] | [0.9999728133172773, 0.8780828292228944] |
0.0005 | 50.0 | 800 | 0.0003 | 0.8976 | 0.9402 | 0.9999 | [0.9999419319790964, 0.7952921395544347] | [0.9999725748376043, 0.8804094927873429] |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 195
Model tree for wangzfsh/upernet-convnext-base-AIData
Base model
openmmlab/upernet-convnext-base