Edit model card

upernet-convnext-base-AIData

This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0003
  • Mean Iou: 0.8976
  • Mean Accuracy: 0.9402
  • Overall Accuracy: 0.9999
  • Per Category Iou: [0.9999419319790964, 0.7952921395544347]
  • Per Category Accuracy: [0.9999725748376043, 0.8804094927873429]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.0005 12.5 200 0.0003 0.8981 0.9393 0.9999 [0.9999424089512944, 0.7962884858709405] [0.9999735287562963, 0.8785481619357841]
0.0005 25.0 400 0.0003 0.8908 0.9232 0.9999 [0.9999394285464914, 0.7816931671680275] [0.9999787753091024, 0.8464402047463937]
0.0005 37.5 600 0.0003 0.8969 0.9390 0.9999 [0.9999415743053811, 0.7938578039545646] [0.9999728133172773, 0.8780828292228944]
0.0005 50.0 800 0.0003 0.8976 0.9402 0.9999 [0.9999419319790964, 0.7952921395544347] [0.9999725748376043, 0.8804094927873429]

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
195
Safetensors
Model size
122M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wangzfsh/upernet-convnext-base-AIData

Finetuned
(5)
this model