File size: 3,917 Bytes
d856806
 
 
 
2c43b4e
67a684c
 
 
 
 
 
 
 
 
 
 
d856806
 
 
 
 
 
 
2c43b4e
 
 
d856806
 
2c43b4e
d856806
 
 
 
 
 
 
0825485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39b30cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c43b4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
language:
- en
- yo
- zu
- xh
- wo
- fr
- ig
- ha
- am
- ar
- so
- sw
- sn
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
datasets:
- vutuka/aya_african_alpaca
pipeline_tag: text-generation
---

# Llama-3.1-8B-african-aya

- **Developed by:** vutuka
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

## Unsloth Inference (2x Faaaaster)

```sh
%%capture
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
```

```py
max_seq_length = 4096 
dtype = None
load_in_4bit = True # Use 4bit quantization to reduce memory usage.

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

```

```py
## Load the Quantize model
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = "vutuka/Llama-3.1-8B-african-aya",
        max_seq_length = max_seq_length,
        dtype = dtype,
        load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
```


```py

def llama_african_aya(input: str = "", instruction: str = ""):
  inputs = tokenizer(
  [
      alpaca_prompt.format(
          instruction,
          input,
          "",
      )
  ], return_tensors = "pt").to("cuda")
  text_streamer = TextStreamer(tokenizer)
  # _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 800)
      # Generate the response
  output = model.generate(**inputs, max_new_tokens=1024)
    
    # Decode the generated response
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    
    # Extract the response part if needed (assuming the response starts after "### Response:")
  response_start = generated_text.find("### Response:") + len("### Response:")
  response = generated_text[response_start:].strip()
    
    # Format the response in Markdown
  # markdown_response = f"{response}"
    
    # Render the markdown response
  # display(Markdown(markdown_response))    
  return response

```


```py
llama_african_aya(
  instruction="",
  input="Àwọn ajínigbé méjì ni wọ́n mú ní Supare Akoko, ṣàlàyé ìtàn náà."
)
```



## LlamaCPP Code

```sh
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" \
  pip install llama-cpp-python
````

```py
from huggingface_hub import hf_hub_download
from llama_cpp import Llama

## Download the GGUF model
model_name = "vutuka/Llama-3.1-8B-african-aya"
model_file = "llama-3.1-8B-african-aya.Q8_0.gguf"
model_path = hf_hub_download(model_name, filename=model_file)

## Instantiate model from downloaded file
llm = Llama(
  model_path=model_path,
  n_ctx=4096,
  n_gpu_layers=-1,
  n_batch=512,
  verbose=False,
)

## Run inference
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

prompt = alpaca_prompt.format(
  "",
  "Àwọn ajínigbé méjì ni wọ́n mú ní Supare Akoko, ṣàlàyé ìtàn náà.",
  "",
)

res = llm(prompt) # Res is a dictionary

## Unpack and the generated text from the LLM response dictionary and print it
print(res["choices"][0]["text"])
# res is short for result
```

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)