Update README.md
Browse files
README.md
CHANGED
@@ -34,6 +34,87 @@ pipeline_tag: text-generation
|
|
34 |
|
35 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## LlamaCPP Code
|
39 |
|
|
|
34 |
|
35 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
36 |
|
37 |
+
## Unsloth Inference (2x Faaaaster)
|
38 |
+
|
39 |
+
```sh
|
40 |
+
%%capture
|
41 |
+
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
|
42 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
43 |
+
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
|
44 |
+
```
|
45 |
+
|
46 |
+
```py
|
47 |
+
max_seq_length = 4096
|
48 |
+
dtype = None
|
49 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage.
|
50 |
+
|
51 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
52 |
+
|
53 |
+
### Instruction:
|
54 |
+
{}
|
55 |
+
|
56 |
+
### Input:
|
57 |
+
{}
|
58 |
+
|
59 |
+
### Response:
|
60 |
+
{}"""
|
61 |
+
|
62 |
+
```
|
63 |
+
|
64 |
+
```py
|
65 |
+
## Load the Quantize model
|
66 |
+
from unsloth import FastLanguageModel
|
67 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
68 |
+
model_name = "vutuka/Llama-3.1-8B-african-aya",
|
69 |
+
max_seq_length = max_seq_length,
|
70 |
+
dtype = dtype,
|
71 |
+
load_in_4bit = load_in_4bit,
|
72 |
+
)
|
73 |
+
FastLanguageModel.for_inference(model)
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
```py
|
78 |
+
|
79 |
+
def llama_african_aya(input: str = "", instruction: str = ""):
|
80 |
+
inputs = tokenizer(
|
81 |
+
[
|
82 |
+
alpaca_prompt.format(
|
83 |
+
instruction,
|
84 |
+
input,
|
85 |
+
"",
|
86 |
+
)
|
87 |
+
], return_tensors = "pt").to("cuda")
|
88 |
+
text_streamer = TextStreamer(tokenizer)
|
89 |
+
# _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 800)
|
90 |
+
# Generate the response
|
91 |
+
output = model.generate(**inputs, max_new_tokens=1024)
|
92 |
+
|
93 |
+
# Decode the generated response
|
94 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
95 |
+
|
96 |
+
# Extract the response part if needed (assuming the response starts after "### Response:")
|
97 |
+
response_start = generated_text.find("### Response:") + len("### Response:")
|
98 |
+
response = generated_text[response_start:].strip()
|
99 |
+
|
100 |
+
# Format the response in Markdown
|
101 |
+
# markdown_response = f"{response}"
|
102 |
+
|
103 |
+
# Render the markdown response
|
104 |
+
# display(Markdown(markdown_response))
|
105 |
+
return response
|
106 |
+
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
```py
|
111 |
+
llama_african_aya(
|
112 |
+
instruction="",
|
113 |
+
input="Àwọn ajínigbé méjì ni wọ́n mú ní Supare Akoko, ṣàlàyé ìtàn náà."
|
114 |
+
)
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
|
119 |
## LlamaCPP Code
|
120 |
|