vit-base-org-plot
This model is a fine-tuned version of google/vit-base-patch16-224 on the vuongnhathien/30VNFoods dataset. It achieves the following results on the evaluation set:
- Loss: 0.5308
- Accuracy: 0.8855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5888 | 1.0 | 275 | 0.6249 | 0.8179 |
0.2832 | 2.0 | 550 | 0.5429 | 0.8537 |
0.1483 | 3.0 | 825 | 0.5962 | 0.8453 |
0.0884 | 4.0 | 1100 | 0.5802 | 0.8573 |
0.034 | 5.0 | 1375 | 0.5869 | 0.8688 |
0.0214 | 6.0 | 1650 | 0.5424 | 0.8823 |
0.0088 | 7.0 | 1925 | 0.5372 | 0.8903 |
0.006 | 8.0 | 2200 | 0.5404 | 0.8871 |
0.0021 | 9.0 | 2475 | 0.5240 | 0.8915 |
0.0033 | 10.0 | 2750 | 0.5256 | 0.8930 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 219
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vuongnhathien/vit-base-org-plot
Base model
google/vit-base-patch16-224Evaluation results
- Accuracy on vuongnhathien/30VNFoodsvalidation set self-reported0.886