Edit model card

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • 'validity airtel xstream fiber id 20001896982 expire 04-sep-23 . please recharge rs 589 enjoy uninterrupted service . recharge , click www.airtel.in/5/c_summary ? n=021710937343_dsl . please ignore already pay .'
  • 'initiate process add a/c . xxxx59 upi app - axis bank'
  • 'google-pay registration initiate icici bank . do , report bank . card details/otp/cvv secret . disclose anyone .'
0
  • 'rs 260.00 debit a/c xxxxxx7783 credit krjngm @ oksbi upi ref:325154274303. ? call 18005700 -bob'
  • 'send rs.400.00 kotak bank ac x4524 7800600122 @ ybl 15-10-23.upi ref 328855774953. , kotak.com/fraud'
  • 'send rs.400.00 kotak bank ac x4524 7800600122 @ ybl 15-10-23.upi ref 328855774953. , kotak.com/fraud'
1
  • 'dear bob upi user , account credit inr 50.00 date 2023-08-27 11:41:09 upi ref 360562629741 - bob'
  • 'receive rs.10000.00 kotak bank ac x4524 mahimagyamlani08 @ okaxis 21-08-23.bal:197,838.14.upi ref:323334598750'
  • 'update ! inr5.66 credit federal bank account xxxx9374 jupiter app . happy bank !'

Evaluation

Metrics

Label Accuracy
all 0.9722

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vipinbansal179/SetFit_sms_Analyzer5c95292")
# Run inference
preds = model("< # > use otp : 8233 login turtlemintpro zck+rfoaqnm")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 20.5357 35
Label Training Sample Count
0 31
1 28
2 81

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0014 1 0.2939 -
0.0708 50 0.1698 -
0.1416 100 0.0557 -
0.2125 150 0.0614 -
0.2833 200 0.0099 -
0.3541 250 0.0005 -
0.4249 300 0.0002 -
0.4958 350 0.0001 -
0.5666 400 0.0001 -
0.6374 450 0.0001 -
0.7082 500 0.0001 -
0.7790 550 0.0001 -
0.8499 600 0.0002 -
0.9207 650 0.0001 -
0.9915 700 0.0001 -
1.0 706 - 0.0312
1.0623 750 0.0001 -
1.1331 800 0.0001 -
1.2040 850 0.0001 -
1.2748 900 0.0 -
1.3456 950 0.0001 -
1.4164 1000 0.0 -
1.4873 1050 0.0 -
1.5581 1100 0.0 -
1.6289 1150 0.0 -
1.6997 1200 0.0 -
1.7705 1250 0.0 -
1.8414 1300 0.0001 -
1.9122 1350 0.0 -
1.9830 1400 0.0001 -
2.0 1412 - 0.0366
2.0538 1450 0.0 -
2.1246 1500 0.0001 -
2.1955 1550 0.0 -
2.2663 1600 0.0 -
2.3371 1650 0.0 -
2.4079 1700 0.0 -
2.4788 1750 0.0 -
2.5496 1800 0.0 -
2.6204 1850 0.0 -
2.6912 1900 0.0 -
2.7620 1950 0.0 -
2.8329 2000 0.0 -
2.9037 2050 0.0 -
2.9745 2100 0.0 -
3.0 2118 - 0.0414
3.0453 2150 0.0 -
3.1161 2200 0.0 -
3.1870 2250 0.0 -
3.2578 2300 0.0 -
3.3286 2350 0.0 -
3.3994 2400 0.0 -
3.4703 2450 0.0 -
3.5411 2500 0.0 -
3.6119 2550 0.0 -
3.6827 2600 0.0 -
3.7535 2650 0.0 -
3.8244 2700 0.0 -
3.8952 2750 0.0 -
3.9660 2800 0.0 -
4.0 2824 - 0.0366
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
15
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vipinbansal179/SetFit_sms_Analyzer5c95292

Finetuned
(152)
this model

Evaluation results