File size: 12,663 Bytes
9ce4eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# coding=utf-8
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for PhoBERT"""

import os
from collections import defaultdict
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union

from transformers.tokenization_utils_base import EncodingFast

from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from .tokenization_phobert import PhobertTokenizer


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.txt",
    "merges_file": "bpe.codes",
    "tokenizer_file": "tokenizer.json",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
        "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
    },
    "merges_file": {
        "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
        "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
    },
    "tokenizer_file": {
        "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/tokenizer.json",
        "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/tokenizer.json",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "vinai/phobert-base": 256,
    "vinai/phobert-large": 256,
}


class PhobertTokenizerFast(PreTrainedTokenizerFast):
    """
    Construct a "Fast" BPE tokenizer for PhoBERT (backed by HuggingFace's *tokenizers* library).

    Peculiarities:

    - uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of
      a punctuation character will be treated separately.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the
    superclass for more information regarding methods.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
        merges_file (`str`):
            Path to the merges file.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names = ["input_ids", "attention_mask"]
    slow_tokenizer_class = PhobertTokenizer

    def __init__(
        self,
        vocab_file=None,
        merges_file=None,
        tokenizer_file=None,
        bos_token="<s>",
        eos_token="</s>",
        sep_token="</s>",
        cls_token="<s>",
        unk_token="<unk>",
        pad_token="<pad>",
        mask_token="<mask>",
        **kwargs
    ):
        super().__init__(
            vocab_file,
            merges_file,
            tokenizer_file=tokenizer_file,
            bos_token=bos_token,
            eos_token=eos_token,
            sep_token=sep_token,
            cls_token=cls_token,
            unk_token=unk_token,
            pad_token=pad_token,
            mask_token=mask_token,
            **kwargs,
        )

        self.vocab_file = vocab_file
        self.merges_file = merges_file
        self.can_save_slow_tokenizer = False if not self.vocab_file else True

    def get_added_vocab_hacking(self):
        """
        Returns the added tokens in the vocabulary as a dictionary of token to index.

        Returns:
            `Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids
        """
        base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False)
        full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True)
        if full_vocab_size == base_vocab_size:
            return {}, {}

        # Tokens in added_vocab should have ids that are equal to or larger than the size of base_vocab
        added_vocab = dict(
            (self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id)
            for index in range(base_vocab_size, full_vocab_size)
        )

        id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items())

        return added_vocab, id_mapping

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = True,
        **kwargs
    ) -> str:
        self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)

        if isinstance(token_ids, int):
            token_ids = [token_ids]

        # Mapping ids into their original values
        _, id_mapping = self.get_added_vocab_hacking()
        if len(id_mapping) > 0:
            token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids]

        text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)

        if clean_up_tokenization_spaces:
            clean_text = self.clean_up_tokenization(text)
            return clean_text
        else:
            return text

    def _convert_encoding(
        self,
        encoding: EncodingFast,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
    ) -> Tuple[Dict[str, Any], List[EncodingFast]]:
        """
        Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list
        of encodings, take care of building a batch from overflowing tokens.

        Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are
        lists (overflows) of lists (tokens).

        Output shape: (overflows, sequence length)
        """
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        if return_overflowing_tokens and encoding.overflowing is not None:
            encodings = [encoding] + encoding.overflowing
        else:
            encodings = [encoding]

        encoding_dict = defaultdict(list)
        added_vocab, _ = self.get_added_vocab_hacking()
        for e in encodings:
            # encoding_dict["input_ids"].append(e.ids)
            # Reassign ids of tokens due to the hacking strategy
            ids = []
            for id, token in zip(e.ids, e.tokens):
                if id <= self.mask_token_id:
                    ids.append(id)
                else:
                    if token.strip() in added_vocab:
                        ids.append(added_vocab[token.strip()])
                    else:
                        ids.append(self.unk_token_id)

            encoding_dict["input_ids"].append(ids)

            if return_token_type_ids:
                encoding_dict["token_type_ids"].append(e.type_ids)
            if return_attention_mask:
                encoding_dict["attention_mask"].append(e.attention_mask)
            if return_special_tokens_mask:
                encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
            if return_offsets_mapping:
                encoding_dict["offset_mapping"].append(e.offsets)
            if return_length:
                # encoding_dict["length"].append(len(e.ids))
                encoding_dict["length"].append(len(ids))

        return encoding_dict, encodings

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A PhoBERT sequence has the following format:

        - single sequence: `<s> X </s>`
        - pair of sequences: `<s> A </s></s> B </s>`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """

        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + sep + token_ids_1 + sep

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
        make use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.

        """

        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not self.can_save_slow_tokenizer:
            raise ValueError(
                "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
                "tokenizer."
            )

        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
            return

        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        out_merges_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
            copyfile(self.vocab_file, out_vocab_file)

        if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file):
            copyfile(self.merges_file, out_merges_file)

        return (out_vocab_file, out_merges_file)