YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Binary classifier to rate how well an input/output pair follows instructions.
Need to format examples like this:
def render_prompts(ex, key):
system = ex.get("system")
rendered = ""
if system and len(system.strip()) > 0:
rendered = rendered + f"### System:\n{system}\n"
if 'input' in ex and 'instruction' not in ex:
ex['instruction'] = ex['input']
del ex['input']
if 'instruction' in ex:
rendered += f"\n### Instruction:\n{ex['instruction']}\n"
if 'input' in ex and len(ex['input'].strip()) > 0:
rendered += f"\n### Input:\n{ex['input']}\n"
rendered += f"\n### Output:\n{ex['output']}"
return {key: rendered.strip()}
Then inference like this:
with torch.no_grad():
pred = model(**tokenized)
logits = pred.logits.cpu().detach()
labels = torch.argmax(logits, dim=1)
probs = F.softmax(logits.to(torch.float32), dim=1)[:,-1]
Labels are 0/1
, probs are 0-1
.
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.