mert-base-finetuned-gtzan

This model is a fine-tuned version of yangwang825/mert-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6800
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0961 1.0 112 1.2710 0.59
0.9162 2.0 224 1.0297 0.64
0.721 3.0 336 1.1227 0.56
0.5045 4.0 448 0.5215 0.83
0.3727 5.0 560 0.5263 0.86
0.1159 6.0 672 0.8055 0.84
0.0276 7.0 784 0.5396 0.87
0.1 8.0 896 0.6800 0.88
0.2564 9.0 1008 0.5907 0.87
0.1327 10.0 1120 0.5915 0.88

Framework versions

  • Transformers 4.25.1
  • Pytorch 2.5.0+cu121
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
7
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train vietanhdev/mert-base-finetuned-gtzan