File size: 1,764 Bytes
a48caa7 81de273 a48caa7 13b9a18 81de273 a48caa7 13b9a18 a48caa7 edc67f2 7a2fea0 277f3c0 ae582a4 244c2ca 7a2fea0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
language: multilingual
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- mnli
- xnli
- anli
license: mit
pipeline_tag: zero-shot-classification
widget:
- text: "De pugna erat fantastic. Nam Crixo decem quam dilexit et praeciderunt caput aemulus."
candidate_labels: "violent, peaceful"
- text: "La película empezaba bien pero terminó siendo un desastre."
candidate_labels: "positivo, negativo, neutral"
- text: "La película empezó siendo un desastre pero en general fue bien."
candidate_labels: "positivo, negativo, neutral"
- text: "¿A quién vas a votar en 2020?"
candidate_labels: "Europa, elecciones, política, ciencia, deportes"
---
### XLM-RoBERTa-large-XNLI-ANLI
XLM-RoBERTa-large model finetunned over several NLI datasets, ready to use for zero-shot classification.
Here are the accuracies for several test datasets:
| | XNLI-es | XNLI-fr | ANLI-R1 | ANLI-R2 | ANLI-R3 |
|-----------------------------|---------|---------|---------|---------|---------|
| xlm-roberta-large-xnli-anli | 93.7% | 93.2% | 68.5% | 53.6% | 49.0% |
The model can be loaded with the zero-shot-classification pipeline like so:
```
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="vicgalle/xlm-roberta-large-xnli-anli")
```
You can then use this pipeline to classify sequences into any of the class names you specify:
```
sequence_to_classify = "Algún día iré a ver el mundo"
candidate_labels = ['viaje', 'cocina', 'danza']
classifier(sequence_to_classify, candidate_labels)
#{'sequence': 'Algún día iré a ver el mundo',
#'labels': ['viaje', 'danza', 'cocina'],
#'scores': [0.9991760849952698, 0.0004178212257102132, 0.0004059972707182169]}
``` |