Artigenz-Coder-DS-6.7B_En__size_52_epochs_10_2024-06-21_05-38-04_3556407
This model is a fine-tuned version of Artigenz/Artigenz-Coder-DS-6.7B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5021
- Accuracy: 0.035
- Chrf: 0.723
- Bleu: 0.604
- Sacrebleu: 0.6
- Rouge1: 0.692
- Rouge2: 0.471
- Rougel: 0.627
- Rougelsum: 0.677
- Meteor: 0.491
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 3407
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 52
- training_steps: 520
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Chrf | Bleu | Sacrebleu | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1281 | 4.0 | 52 | 1.2181 | 0.029 | 0.733 | 0.612 | 0.6 | 0.674 | 0.454 | 0.608 | 0.665 | 0.546 |
0.5716 | 8.0 | 104 | 1.2202 | 0.032 | 0.714 | 0.602 | 0.6 | 0.676 | 0.461 | 0.612 | 0.667 | 0.503 |
0.1833 | 12.0 | 156 | 1.1088 | 0.036 | 0.722 | 0.613 | 0.6 | 0.689 | 0.468 | 0.619 | 0.675 | 0.552 |
0.1646 | 16.0 | 208 | 1.1923 | 0.034 | 0.729 | 0.614 | 0.6 | 0.699 | 0.47 | 0.623 | 0.684 | 0.545 |
0.171 | 20.0 | 260 | 1.4073 | 0.034 | 0.7 | 0.591 | 0.6 | 0.662 | 0.447 | 0.599 | 0.649 | 0.471 |
0.4405 | 24.0 | 312 | 1.4275 | 0.035 | 0.704 | 0.588 | 0.6 | 0.663 | 0.447 | 0.601 | 0.651 | 0.482 |
0.1094 | 28.0 | 364 | 1.3566 | 0.035 | 0.727 | 0.619 | 0.6 | 0.692 | 0.481 | 0.628 | 0.678 | 0.52 |
0.5148 | 32.0 | 416 | 1.3953 | 0.034 | 0.728 | 0.622 | 0.6 | 0.697 | 0.481 | 0.631 | 0.683 | 0.527 |
0.1122 | 36.0 | 468 | 1.4576 | 0.035 | 0.72 | 0.607 | 0.6 | 0.693 | 0.466 | 0.622 | 0.68 | 0.512 |
0.246 | 40.0 | 520 | 1.5021 | 0.035 | 0.723 | 0.604 | 0.6 | 0.692 | 0.471 | 0.627 | 0.677 | 0.491 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.15.2
Model tree for vdavidr/Artigenz-Coder-DS-6.7B_En__size_52_epochs_10_2024-06-21_05-38-04_3556407
Base model
Artigenz/Artigenz-Coder-DS-6.7B