Model Description

YOLOv10: Real-Time End-to-End Object Detection

Installation

pip install git+https://github.com/THU-MIG/yolov10.git

Training and validation

from ultralytics import YOLOv10

model = YOLOv10.from_pretrained('jameslahm/yolov10n')
# Training
model.train(...)
# after training, one can push to the hub
model.push_to_hub("your-hf-username/yolov10-finetuned")

# Validation
model.val(...)

Inference

Here's an end-to-end example showcasing inference on a cats image:

from ultralytics import YOLOv10

model = YOLOv10.from_pretrained('jameslahm/yolov10n')
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
model.predict(source=source, save=True)

which shows:

image/png

BibTeX Entry and Citation Info

@article{wang2024yolov10,
  title={YOLOv10: Real-Time End-to-End Object Detection},
  author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
  journal={arXiv preprint arXiv:2405.14458},
  year={2024}
}
Downloads last month
15
Safetensors
Model size
2.8M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train vanillo/yolov10n