TODO: [To be filled]

Evaluation on LibriSpeech Test

The following script shows how to evaluate this model on the LibriSpeech "clean" and "other" test dataset.

from datasets import load_dataset
from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer
import soundfile as sf
from jiwer import wer

librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")  # change to "other" for other test dataset

model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_large").to("cuda")
tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_large", do_upper_case=True)

def map_to_array(batch):
    speech, _ = sf.read(batch["file"])
    batch["speech"] = speech
    return batch

librispeech_eval = librispeech_eval.map(map_to_array)

def map_to_pred(batch):
    features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt")
    input_features = features.input_features.to("cuda")
    attention_mask = features.attention_mask.to("cuda")

    gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)
    batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
    return batch

result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"])

print("WER:", wer(result["text"], result["transcription"]))

Result (WER):

"clean" "other"
3.3 7.5
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train valhalla/s2t_librispeech_large