|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-accents |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.2708333333333333 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-accents |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0374 |
|
- Accuracy: 0.2708 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.6 |
|
- num_epochs: 14 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.4741 | 1.0 | 48 | 2.4767 | 0.1042 | |
|
| 2.4794 | 2.0 | 96 | 2.4594 | 0.1042 | |
|
| 2.4795 | 3.0 | 144 | 2.4242 | 0.1042 | |
|
| 2.3636 | 4.0 | 192 | 2.3929 | 0.1042 | |
|
| 2.2958 | 5.0 | 240 | 2.3036 | 0.1667 | |
|
| 2.2177 | 6.0 | 288 | 2.1868 | 0.1771 | |
|
| 1.9929 | 7.0 | 336 | 2.0746 | 0.2396 | |
|
| 1.9842 | 8.0 | 384 | 2.0638 | 0.2292 | |
|
| 1.934 | 9.0 | 432 | 2.0566 | 0.2292 | |
|
| 1.7302 | 10.0 | 480 | 2.1105 | 0.2083 | |
|
| 1.6971 | 11.0 | 528 | 1.9927 | 0.2292 | |
|
| 1.4807 | 12.0 | 576 | 2.0434 | 0.2396 | |
|
| 1.3496 | 13.0 | 624 | 2.0579 | 0.2708 | |
|
| 1.3694 | 14.0 | 672 | 2.0374 | 0.2708 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|