--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: distilhubert-finetuned-accents results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.2708333333333333 --- # distilhubert-finetuned-accents This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0374 - Accuracy: 0.2708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.6 - num_epochs: 14 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4741 | 1.0 | 48 | 2.4767 | 0.1042 | | 2.4794 | 2.0 | 96 | 2.4594 | 0.1042 | | 2.4795 | 3.0 | 144 | 2.4242 | 0.1042 | | 2.3636 | 4.0 | 192 | 2.3929 | 0.1042 | | 2.2958 | 5.0 | 240 | 2.3036 | 0.1667 | | 2.2177 | 6.0 | 288 | 2.1868 | 0.1771 | | 1.9929 | 7.0 | 336 | 2.0746 | 0.2396 | | 1.9842 | 8.0 | 384 | 2.0638 | 0.2292 | | 1.934 | 9.0 | 432 | 2.0566 | 0.2292 | | 1.7302 | 10.0 | 480 | 2.1105 | 0.2083 | | 1.6971 | 11.0 | 528 | 1.9927 | 0.2292 | | 1.4807 | 12.0 | 576 | 2.0434 | 0.2396 | | 1.3496 | 13.0 | 624 | 2.0579 | 0.2708 | | 1.3694 | 14.0 | 672 | 2.0374 | 0.2708 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0