File size: 2,271 Bytes
610e9bf e2a9a95 610e9bf d988f69 e2a9a95 610e9bf d988f69 610e9bf d988f69 610e9bf d988f69 610e9bf d988f69 610e9bf d988f69 610e9bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-accents
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.2708333333333333
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-accents
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0748
- Accuracy: 0.2708
## Model description
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.7
- num_epochs: 14
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.4778 | 1.0 | 48 | 2.4807 | 0.0938 |
| 2.4779 | 2.0 | 96 | 2.4651 | 0.1042 |
| 2.4751 | 3.0 | 144 | 2.4365 | 0.1042 |
| 2.3777 | 4.0 | 192 | 2.4187 | 0.1042 |
| 2.3786 | 5.0 | 240 | 2.4050 | 0.1458 |
| 2.3754 | 6.0 | 288 | 2.3446 | 0.1458 |
| 2.1556 | 7.0 | 336 | 2.2284 | 0.2083 |
| 2.1062 | 8.0 | 384 | 2.1533 | 0.2188 |
| 2.0081 | 9.0 | 432 | 2.0765 | 0.2292 |
| 1.813 | 10.0 | 480 | 2.0671 | 0.2083 |
| 1.74 | 11.0 | 528 | 1.9977 | 0.3021 |
| 1.4795 | 12.0 | 576 | 2.0588 | 0.2396 |
| 1.298 | 13.0 | 624 | 2.0652 | 0.3021 |
| 1.2578 | 14.0 | 672 | 2.0748 | 0.2708 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|