from transformers import AutoTokenizer, TextStreamer from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM from unsloth import FastLanguageModel import torch alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
Instruction:
{}
Input:
{}
Response:
{}"""
Load the Peft configuration
config = PeftConfig.from_pretrained("umairimran/medical_chatbot_model_trained_on_ruslanmv_ai-medical-chatbot")
Load the base model from Hugging Face with float16 data type
base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Meta-Llama-3.1-8B-bnb-4bit", torch_dtype=torch.float16, # Switch to float16 device_map="auto" # Automatically map model to available devices )
Apply the PeftModel to the base model
model = PeftModel.from_pretrained(base_model, "umairimran/medical_chatbot_model_trained_on_ruslanmv_ai-medical-chatbot")
Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-bnb-4bit")
Optimize the model for inference (this applies if using FastLanguageModel)
FastLanguageModel.for_inference(model)
Prepare the input without using .to("cuda") because device_map="auto" handles it
inputs = tokenizer( alpaca_prompt.format( "hello doctor can you understand me i want to know about deseacse of flu", # instruction "i dont know how to flu", "", # output - leave this blank for generation! ), return_tensors="pt" )
Set up the streamer for output
text_streamer = TextStreamer(tokenizer)
Generate the output
_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)
Model tree for umairimran/model
Base model
meta-llama/Meta-Llama-3-8B