BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("uhoffmann/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The quality of GM dealerships and our relationship with our dealers are critical to our success, now, and as we transition to our all-electric future, given that they maintain the primary sales and service interface with the end consumer of our products. In addition to the terms of our contracts with our dealers, we are regulated by various country and state franchise laws and regulations that may supersede those contractual terms and impose specific regulatory',
'How does General[39 chars] Motors ensure quality in their dealership network?',
"How can the public access the company's financial and legal reports?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6786 |
cosine_accuracy@3 | 0.8171 |
cosine_accuracy@5 | 0.8671 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.6786 |
cosine_precision@3 | 0.2724 |
cosine_precision@5 | 0.1734 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.6786 |
cosine_recall@3 | 0.8171 |
cosine_recall@5 | 0.8671 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.7949 |
cosine_mrr@10 | 0.758 |
cosine_map@100 | 0.7618 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6714 |
cosine_accuracy@3 | 0.8171 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9029 |
cosine_precision@1 | 0.6714 |
cosine_precision@3 | 0.2724 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0903 |
cosine_recall@1 | 0.6714 |
cosine_recall@3 | 0.8171 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9029 |
cosine_ndcg@10 | 0.7892 |
cosine_mrr@10 | 0.7525 |
cosine_map@100 | 0.7567 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6671 |
cosine_accuracy@3 | 0.8143 |
cosine_accuracy@5 | 0.8657 |
cosine_accuracy@10 | 0.9029 |
cosine_precision@1 | 0.6671 |
cosine_precision@3 | 0.2714 |
cosine_precision@5 | 0.1731 |
cosine_precision@10 | 0.0903 |
cosine_recall@1 | 0.6671 |
cosine_recall@3 | 0.8143 |
cosine_recall@5 | 0.8657 |
cosine_recall@10 | 0.9029 |
cosine_ndcg@10 | 0.7867 |
cosine_mrr@10 | 0.7492 |
cosine_map@100 | 0.7533 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6543 |
cosine_accuracy@3 | 0.8071 |
cosine_accuracy@5 | 0.8429 |
cosine_accuracy@10 | 0.9 |
cosine_precision@1 | 0.6543 |
cosine_precision@3 | 0.269 |
cosine_precision@5 | 0.1686 |
cosine_precision@10 | 0.09 |
cosine_recall@1 | 0.6543 |
cosine_recall@3 | 0.8071 |
cosine_recall@5 | 0.8429 |
cosine_recall@10 | 0.9 |
cosine_ndcg@10 | 0.7764 |
cosine_mrr@10 | 0.7369 |
cosine_map@100 | 0.7407 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.62 |
cosine_accuracy@3 | 0.7671 |
cosine_accuracy@5 | 0.8171 |
cosine_accuracy@10 | 0.8786 |
cosine_precision@1 | 0.62 |
cosine_precision@3 | 0.2557 |
cosine_precision@5 | 0.1634 |
cosine_precision@10 | 0.0879 |
cosine_recall@1 | 0.62 |
cosine_recall@3 | 0.7671 |
cosine_recall@5 | 0.8171 |
cosine_recall@10 | 0.8786 |
cosine_ndcg@10 | 0.7483 |
cosine_mrr@10 | 0.7068 |
cosine_map@100 | 0.711 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 2 tokens
- mean: 44.88 tokens
- max: 272 tokens
- min: 2 tokens
- mean: 20.58 tokens
- max: 45 tokens
- Samples:
positive anchor Walmart Inc. reported total revenues of $611,289 million for the fiscal year ended January 31, 2023.
What was Walmart Inc.'s total revenue in the fiscal year ended January 31, 2023?
The total equity balance of Visa Inc. as of September 30, 2023 was $38,733 million.
What was the total equity of Visa Inc. as of September 30, 2023?
Nike incorporates new technologies in its product design by using market intelligence and research, which helps its design teams identify opportunities to leverage these technologies in existing categories to respond to consumer preferences.
How does Nike incorporate new technologies in its product design?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5521 | - | - | - | - | - |
0.9746 | 12 | - | 0.7178 | 0.7352 | 0.7404 | 0.6833 | 0.7422 |
1.6244 | 20 | 0.6753 | - | - | - | - | - |
1.9492 | 24 | - | 0.7340 | 0.7452 | 0.7524 | 0.7057 | 0.7561 |
2.4365 | 30 | 0.4611 | - | - | - | - | - |
2.9239 | 36 | - | 0.7392 | 0.7509 | 0.7560 | 0.7103 | 0.7588 |
3.2487 | 40 | 0.3763 | - | - | - | - | - |
3.8985 | 48 | - | 0.7407 | 0.7533 | 0.7567 | 0.711 | 0.7618 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for uhoffmann/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.679
- Cosine Accuracy@3 on dim 768self-reported0.817
- Cosine Accuracy@5 on dim 768self-reported0.867
- Cosine Accuracy@10 on dim 768self-reported0.910
- Cosine Precision@1 on dim 768self-reported0.679
- Cosine Precision@3 on dim 768self-reported0.272
- Cosine Precision@5 on dim 768self-reported0.173
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.679
- Cosine Recall@3 on dim 768self-reported0.817