Edit model card

lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_5e-4_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4565
  • Accuracy: 0.7919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7331 1.0 529 1.4271 0.6365
1.3037 2.0 1058 1.0687 0.6846
0.8818 3.0 1587 0.8142 0.7216
0.6397 4.0 2116 0.6636 0.7470
0.4735 5.0 2645 0.5547 0.7667
0.3798 6.0 3174 0.5002 0.7764
0.3409 7.0 3703 0.4850 0.7801
0.3054 8.0 4232 0.4691 0.7835
0.2803 9.0 4761 0.4637 0.7859
0.2637 10.0 5290 0.4532 0.7877
0.2661 11.0 5819 0.4668 0.7879
0.2513 12.0 6348 0.4647 0.7893
0.2424 13.0 6877 0.4615 0.7897
0.2499 14.0 7406 0.4546 0.7894
0.235 15.0 7935 0.4668 0.7896
0.2317 16.0 8464 0.4510 0.7913
0.2225 17.0 8993 0.4497 0.7915
0.2358 18.0 9522 0.4475 0.7916
0.2253 19.0 10051 0.4529 0.7918
0.2172 20.0 10580 0.4565 0.7919

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_5e-4_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(268)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_5e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3
    self-reported
    0.792