lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-5_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 2.5214
- Accuracy: 0.5534
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.8353 | 0.9973 | 187 | 1.6327 | 0.5719 |
1.5773 | 2.0 | 375 | 1.6119 | 0.5743 |
1.4151 | 2.9973 | 562 | 1.6409 | 0.5734 |
1.226 | 4.0 | 750 | 1.7002 | 0.5688 |
1.0718 | 4.9973 | 937 | 1.7919 | 0.5664 |
0.9478 | 6.0 | 1125 | 1.8953 | 0.5631 |
0.8356 | 6.9973 | 1312 | 1.9827 | 0.5607 |
0.7482 | 8.0 | 1500 | 2.0659 | 0.5591 |
0.6415 | 8.9973 | 1687 | 2.2042 | 0.5565 |
0.6094 | 10.0 | 1875 | 2.2516 | 0.5552 |
0.5807 | 10.9973 | 2062 | 2.2925 | 0.5554 |
0.5647 | 12.0 | 2250 | 2.3210 | 0.5562 |
0.5523 | 12.9973 | 2437 | 2.3624 | 0.556 |
0.5417 | 14.0 | 2625 | 2.4357 | 0.5541 |
0.5335 | 14.9973 | 2812 | 2.4554 | 0.5528 |
0.5312 | 16.0 | 3000 | 2.4443 | 0.5553 |
0.5001 | 16.9973 | 3187 | 2.4833 | 0.5533 |
0.4992 | 18.0 | 3375 | 2.4588 | 0.5559 |
0.5004 | 18.9973 | 3562 | 2.5082 | 0.5546 |
0.4983 | 19.9467 | 3740 | 2.5214 | 0.5534 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-5_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_5e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qaself-reported0.553