lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-hf_5e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 2.1089
- Accuracy: 0.6005
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3891 | 1.0 | 529 | 1.3015 | 0.6138 |
1.3633 | 2.0 | 1058 | 1.2855 | 0.6166 |
1.2929 | 3.0 | 1587 | 1.2954 | 0.6177 |
1.2361 | 4.0 | 2116 | 1.3489 | 0.6045 |
1.1856 | 5.0 | 2645 | 1.3968 | 0.6125 |
1.1098 | 6.0 | 3174 | 1.4721 | 0.6115 |
1.0753 | 7.0 | 3703 | 1.5798 | 0.6076 |
1.0048 | 8.0 | 4232 | 1.6042 | 0.6084 |
0.9456 | 9.0 | 4761 | 1.6843 | 0.5977 |
0.8766 | 10.0 | 5290 | 1.7829 | 0.6051 |
0.8273 | 11.0 | 5819 | 1.8060 | 0.6043 |
0.7755 | 12.0 | 6348 | 1.8729 | 0.6019 |
0.715 | 13.0 | 6877 | 1.9620 | 0.6017 |
0.6804 | 14.0 | 7406 | 2.0030 | 0.6009 |
0.6277 | 15.0 | 7935 | 2.0528 | 0.5998 |
0.5733 | 16.0 | 8464 | 2.0475 | 0.6012 |
0.5409 | 17.0 | 8993 | 2.0920 | 0.5749 |
0.5024 | 18.0 | 9522 | 2.1207 | 0.5986 |
0.4699 | 19.0 | 10051 | 2.1108 | 0.5993 |
0.4367 | 20.0 | 10580 | 2.1089 | 0.6005 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-hf_5e-5_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-hf_5e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3self-reported0.600