lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_5e-5_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5129
  • Accuracy: 0.5609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.843 1.0 529 1.6193 0.5738
1.7946 2.0 1058 1.6033 0.5756
1.675 3.0 1587 1.6412 0.5741
1.6045 4.0 2116 1.7177 0.5717
1.4962 5.0 2645 1.8518 0.5677
1.4058 6.0 3174 1.9380 0.5668
1.348 7.0 3703 2.0013 0.5651
1.3061 8.0 4232 2.1522 0.5629
1.2537 9.0 4761 2.1630 0.5635
1.208 10.0 5290 2.2419 0.5630
1.1346 11.0 5819 2.2893 0.5629
1.0951 12.0 6348 2.3280 0.5639
1.0306 13.0 6877 2.3896 0.5619
0.9875 14.0 7406 2.3976 0.5630
0.9005 15.0 7935 2.4602 0.5610
0.8609 16.0 8464 2.4857 0.5624
0.7923 17.0 8993 2.4992 0.5619
0.7522 18.0 9522 2.5021 0.5613
0.7038 19.0 10051 2.5203 0.5623
0.6484 20.0 10580 2.5129 0.5609

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_5e-5_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_5e-5_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3
    self-reported
    0.561