BERT-LARGE-MONGOLIAN-CASED
Link to Official Mongolian-BERT repo
Model description
This repository contains pre-trained Mongolian BERT models trained by tugstugi, enod and sharavsambuu. Special thanks to nabar who provided 5x TPUs.
This repository is based on the following open source projects: google-research/bert, huggingface/pytorch-pretrained-BERT and yoheikikuta/bert-japanese.
How to use
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-large-mongolian-cased', use_fast=False)
model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-large-mongolian-cased')
## declare task ##
pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer)
## example ##
input_ = 'Монгол улсын [MASK] Улаанбаатар хотоос ярьж байна.'
output_ = pipe(input_)
for i in range(len(output_)):
print(output_[i])
## output ##
# {'sequence': 'Монгол улсын нийслэл Улаанбаатар хотоос ярьж байна.', 'score': 0.9779232740402222, 'token': 1176, 'token_str': 'нийслэл'}
# {'sequence': 'Монгол улсын Нийслэл Улаанбаатар хотоос ярьж байна.', 'score': 0.015034765936434269, 'token': 4059, 'token_str': 'Нийслэл'}
# {'sequence': 'Монгол улсын Ерөнхийлөгч Улаанбаатар хотоос ярьж байна.', 'score': 0.0021413620561361313, 'token': 325, 'token_str': 'Ерөнхийлөгч'}
# {'sequence': 'Монгол улсын ерөнхийлөгч Улаанбаатар хотоос ярьж байна.', 'score': 0.0008035294013097882, 'token': 1215, 'token_str': 'ерөнхийлөгч'}
# {'sequence': 'Монгол улсын нийслэлийн Улаанбаатар хотоос ярьж байна.', 'score': 0.0006434018723666668, 'token': 356, 'token_str': 'нийслэлийн'}
Training data
Mongolian Wikipedia and the 700 million word Mongolian news data set [Pretraining Procedure]
BibTeX entry and citation info
@misc{mongolian-bert,
author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold},
title = {BERT Pretrained Models on Mongolian Datasets},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}}
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.