BERT-BASE-MONGOLIAN-UNCASED

Link to Official Mongolian-BERT repo

Model description

This repository contains pre-trained Mongolian BERT models trained by tugstugi, enod and sharavsambuu. Special thanks to nabar who provided 5x TPUs.

This repository is based on the following open source projects: google-research/bert, huggingface/pytorch-pretrained-BERT and yoheikikuta/bert-japanese.

How to use

from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-base-mongolian-uncased', use_fast=False)
model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-base-mongolian-uncased')

## declare task ##
pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer)

## example ##
input_  = 'Миний [MASK] хоол идэх нь тун чухал.'

output_ = pipe(input_)
for i in range(len(output_)):
    print(output_[i])

## output ##
#{'sequence': 'миний хувьд хоол идэх нь тун чухал.', 'score': 0.7889143824577332, 'token': 126, 'token_str': 'хувьд'}
#{'sequence': 'миний бодлоор хоол идэх нь тун чухал.', 'score': 0.18616807460784912, 'token': 6106, 'token_str': 'бодлоор'}
#{'sequence': 'миний зүгээс хоол идэх нь тун чухал.', 'score': 0.004825591575354338, 'token': 761, 'token_str': 'зүгээс'}
#{'sequence': 'миний биед хоол идэх нь тун чухал.', 'score': 0.0015743684489279985, 'token': 3010, 'token_str': 'биед'}
#{'sequence': 'миний тухайд хоол идэх нь тун чухал.', 'score': 0.0014919431414455175, 'token': 1712, 'token_str': 'тухайд'}

Training data

Mongolian Wikipedia and the 700 million word Mongolian news data set [Pretraining Procedure]

BibTeX entry and citation info

@misc{mongolian-bert,
  author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold},
  title = {BERT Pretrained Models on Mongolian Datasets},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}}
}
Downloads last month
101
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.