File size: 14,264 Bytes
8c087f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
"""Implements HF OpenELMConfig based on PretrainedConfig"""
from numbers import Number
from typing import List, Optional, Union
import numpy as np
from transformers import PretrainedConfig
def make_divisible(
v: Union[float, int],
divisor: Optional[int] = 8,
min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by the divisor
It can be seen at:
https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
Args:
v: input value
divisor: default to 8
min_value: minimum divisor value
Returns:
new_v: new divisible value
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def compute_heads(model_dim: int, head_dim: int) -> int:
"""Compute the number of heads.
Args:
model_dim: Model dimension.
head_dim: Head dimension.
Returns:
An integer denoting number of heads in multi-head attention is returned.
Raises:
ValueError: if model dimension is not divisible by head dimension.
"""
if model_dim % head_dim == 0:
return model_dim // head_dim
else:
raise ValueError(
f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
)
OpenELM_CONFIGS = {
"OpenELM-270M": dict(
num_transformer_layers=16,
model_dim=1280,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-450M": dict(
num_transformer_layers=20,
model_dim=1536,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-1_1B": dict(
num_transformer_layers=28,
model_dim=2048,
head_dim=64,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
"OpenELM-3B": dict(
num_transformer_layers=36,
model_dim=3072,
head_dim=128,
num_gqa_groups=4,
normalize_qk_projections=True,
share_input_output_layers=True,
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
ffn_multipliers=(0.5, 4.0),
qkv_multipliers=(0.5, 1.0),
),
}
class OpenELMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the OpenELM model.
max_context_length (`int`, *optional*, defaults to 2048):
Maximum number of input tokens.
num_transformer_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer decoder.
model_dim (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
resulting in uniform allocation of parameters.
If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
num_query_heads (`Union[int, None]`, *optional*, defaults to None):
The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
num_gqa_groups (`int`, *optional*, defaults to 1):
This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
When num_gqa_groups == 1, then it is multi-head attention.
When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
When num_gqa_groups == num_heads, then it is multi-query attention
ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
Feed-forward network (FFN) multipliers.
If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
resulting in uniform allocation of parameters.
If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
ffn_with_glu (`bool`, *optional*, defaults to True):
Whether to use FFN with Gated Linear Unit (GLU)
ffn_dim_divisor (`int`, *optional*, defaults to 256):
The ffn layer dimension divisor.
activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the decoder.
normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
Type of normalization layer.
normalize_qk_projections (`bool`, *optional*, defaults to False):
Whether to normalize queries and keys after projections
share_input_output_layers (`bool`, *optional*, defaults to False):
Whether to share the embedding between input and output linear layer
rope_freq_constant (`int`, *optional*, defaults to 10000):
The base period of the RoPE embeddings.
rope_max_length (`int`, *optional*, defaults to 4096):
That rope_max_length is set to twice of max_context_length.
This allows flexibility in token lengths during training or fine-tuning.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
"""
model_type = "openelm"
def __init__(
self,
vocab_size: int = 32000,
max_context_length: int = 2048,
num_transformer_layers: int = 12,
model_dim: int = 2048,
head_dim: int = 128,
qkv_multipliers: Union[Number, List[Number]] = 1.0,
num_query_heads: Union[int, None] = None,
num_gqa_groups: int = 1,
ffn_multipliers: Union[Number, List[Number]] = 4.0,
ffn_with_glu: bool = True,
ffn_dim_divisor: int = 256,
activation_fn_name: str = "swish",
normalization_layer_name: str = "rms_norm",
normalize_qk_projections: bool = False,
share_input_output_layers: bool = False,
rope_freq_constant: int = 10000,
rope_max_length: int = 4096,
initializer_range: float = 0.02,
use_cache: bool = True,
bos_token_id: int = 1,
eos_token_id: int = 2,
**kwargs,
) -> None:
self.vocab_size = vocab_size
self.max_context_length = max_context_length
self.num_transformer_layers = num_transformer_layers
self.model_dim = model_dim
self.head_dim = head_dim
self.qkv_multipliers = qkv_multipliers
self.num_query_heads = num_query_heads
self.num_gqa_groups = num_gqa_groups
self.ffn_multipliers = ffn_multipliers
self.ffn_with_glu = ffn_with_glu
self.ffn_dim_divisor = ffn_dim_divisor
self.activation_fn_name = activation_fn_name
self.normalization_layer_name = normalization_layer_name
self.normalize_qk_projections = normalize_qk_projections
self.share_input_output_layers = share_input_output_layers
self.rope_freq_constant = rope_freq_constant
self.rope_max_length = rope_max_length
self.num_query_heads = (
compute_heads(model_dim=model_dim, head_dim=head_dim)
if num_query_heads is None
else num_query_heads
)
self.initializer_range = initializer_range
self.__post_init__()
super().__init__(
use_cache=use_cache,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
def __post_init__(self) -> None:
if self.num_gqa_groups is not None:
head_multiple_of = self.num_gqa_groups
else:
head_multiple_of = 2
if isinstance(self.qkv_multipliers, Number):
# All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
qkv_dim = make_divisible(
self.model_dim * self.qkv_multipliers,
divisor=self.head_dim * head_multiple_of,
)
query_dims = [int(qkv_dim)] * self.num_transformer_layers
elif (
isinstance(self.qkv_multipliers, (tuple, list))
and len(self.qkv_multipliers) == 2
):
# Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
# This results in variable allocation of parameters in attention layer.
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
qkv_multipliers = [
round(v, 2)
for v in np.linspace(
self.qkv_multipliers[0],
self.qkv_multipliers[1],
num=self.num_transformer_layers,
dtype=float,
)
]
# Make sure that scaled model dimension is divisible by scaled head dimension.
query_dims = [
int(
make_divisible(
self.model_dim * m, divisor=self.head_dim * head_multiple_of
)
)
for m in qkv_multipliers
]
else:
raise NotImplementedError(
f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
)
# compute the number of query, key, and value heads
# For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
# For group query attention, the number of key and value heads are the same.
self.num_query_heads = [
int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
]
self.num_kv_heads = [
q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
]
# Feed-forward network (FFN) multipliers
if isinstance(self.ffn_multipliers, Number):
# All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
elif isinstance(self.ffn_multipliers, (tuple, list)):
# Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
# This results in variable allocation of parameters in FFN layer.
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
if len(self.ffn_multipliers) == 2:
self.ffn_multipliers = [
round(v, 2)
for v in np.linspace(
self.ffn_multipliers[0],
self.ffn_multipliers[1],
num=self.num_transformer_layers,
dtype=float,
)
]
else:
assert (
len(self.ffn_multipliers) == self.num_transformer_layers
), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
else:
raise NotImplementedError(
f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
)
# check num_query_heads divisible by num_kv_heads for every layer
for layer_idx in range(len(query_dims)):
assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0
|