Edit model card

5-epochs5-char-based-freeze_cnn-dropout0.3

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.000000000000001e-06
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 40
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer
10.4529 0.07 2500 21.5863 1.0
5.5789 0.14 5000 7.7088 1.0
3.9797 0.2 7500 4.7691 1.0
3.5344 0.27 10000 3.7288 1.0
3.5794 0.34 12500 3.8970 1.0
3.5264 0.41 15000 3.9099 1.0
3.5346 0.47 17500 3.9135 1.0
3.6184 0.54 20000 3.9921 1.0
3.5259 0.61 22500 3.9837 1.0
3.5744 0.68 25000 3.9882 1.0
3.5945 0.74 27500 3.7869 1.0
3.6836 0.81 30000 3.9407 1.0
3.7874 0.88 32500 3.7358 1.0
3.7926 0.95 35000 3.7358 1.0
3.7937 1.01 37500 3.7358 1.0
3.7933 1.08 40000 3.7358 1.0
3.7923 1.15 42500 3.7358 1.0
3.7923 1.22 45000 3.7358 1.0
3.7965 1.28 47500 3.7358 1.0
3.7942 1.35 50000 3.7358 1.0
3.7934 1.42 52500 3.7358 1.0
3.7851 1.49 55000 3.7358 1.0
3.7826 1.55 57500 3.7358 1.0
3.7891 1.62 60000 3.7358 1.0
3.7992 1.69 62500 3.7358 1.0
3.8099 1.76 65000 3.7358 1.0
3.7788 1.82 67500 3.7358 1.0
3.7816 1.89 70000 3.7358 1.0
3.7846 1.96 72500 3.7358 1.0
3.783 2.03 75000 3.7358 1.0
3.8451 2.09 77500 3.7358 1.0
3.7883 2.16 80000 3.7358 1.0
3.7915 2.23 82500 3.7358 1.0
3.7688 2.3 85000 3.7358 1.0
3.7959 2.36 87500 3.7358 1.0
3.7794 2.43 90000 3.7358 1.0
3.7862 2.5 92500 3.7358 1.0
3.8008 2.57 95000 3.7358 1.0
3.793 2.63 97500 3.7358 1.0
3.7781 2.7 100000 3.7358 1.0
3.7878 2.77 102500 3.7358 1.0
3.836 2.84 105000 3.7358 1.0
3.7914 2.9 107500 3.7358 1.0
3.7886 2.97 110000 3.7358 1.0
3.7924 3.04 112500 3.7358 1.0
3.7866 3.11 115000 3.7358 1.0
3.8027 3.17 117500 3.7358 1.0
0.0 3.24 120000 nan 1.0
0.0 3.31 122500 nan 1.0
0.0 3.38 125000 nan 1.0
0.0 3.44 127500 nan 1.0
0.0 3.51 130000 nan 1.0
0.0 3.58 132500 nan 1.0
0.0 3.65 135000 nan 1.0
0.0 3.71 137500 nan 1.0
0.0 3.78 140000 nan 1.0
0.0 3.85 142500 nan 1.0
0.0 3.92 145000 nan 1.0
0.0 3.98 147500 nan 1.0
0.0 4.05 150000 nan 1.0
0.0 4.12 152500 nan 1.0
0.0 4.19 155000 nan 1.0
0.0 4.26 157500 nan 1.0
0.0 4.32 160000 nan 1.0
0.0 4.39 162500 nan 1.0
0.0 4.46 165000 nan 1.0
0.0 4.53 167500 nan 1.0
0.0 4.59 170000 nan 1.0
0.0 4.66 172500 nan 1.0
0.0 4.73 175000 nan 1.0
0.0 4.8 177500 nan 1.0
0.0 4.86 180000 nan 1.0
0.0 4.93 182500 nan 1.0
0.0 5.0 185000 nan 1.0

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tuanio/5-epochs5-char-based-freeze_cnn-dropout0.3

Finetuned
(458)
this model