File size: 3,682 Bytes
b97bfaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
base_model: Trisert/tinyllama-alpaca
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: outputs/qlora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: qlora
base_model: Trisert/tinyllama-alpaca
bf16: false
dataset_prepared_path: null
datasets:
- ds_tipe: json
path: /content/instruct_dataset.jsonl
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: false
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 8
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: paged_adamw_32bit
output_dir: ./outputs/qlora-out
pad_to_sequence_len: false
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# outputs/qlora-out
This model is a fine-tuned version of [Trisert/tinyllama-alpaca](https://huggingface.co/Trisert/tinyllama-alpaca) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.1589 | 0.0336 | 1 | 3.2144 |
| 2.8091 | 0.2689 | 8 | 2.6286 |
| 2.312 | 0.5378 | 16 | 2.2424 |
| 2.0133 | 0.8067 | 24 | 2.1532 |
| 2.1417 | 1.0756 | 32 | 2.1121 |
| 2.0591 | 1.3445 | 40 | 2.0889 |
| 2.0986 | 1.6134 | 48 | 2.0764 |
| 2.0055 | 1.8824 | 56 | 2.0758 |
| 1.8986 | 2.1513 | 64 | 2.0703 |
| 1.9346 | 2.4202 | 72 | 2.0701 |
| 2.0248 | 2.6891 | 80 | 2.0725 |
| 2.0656 | 2.9580 | 88 | 2.0726 |
| 1.8457 | 3.2269 | 96 | 2.0722 |
| 2.0257 | 3.4958 | 104 | 2.0721 |
| 1.936 | 3.7647 | 112 | 2.0721 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |