lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7516
- Answer: {'precision': 0.8642691415313225, 'recall': 0.9118727050183598, 'f1': 0.8874329958308517, 'number': 817}
- Header: {'precision': 0.6106194690265486, 'recall': 0.5798319327731093, 'f1': 0.5948275862068966, 'number': 119}
- Question: {'precision': 0.9112149532710281, 'recall': 0.9052924791086351, 'f1': 0.9082440614811365, 'number': 1077}
- Overall Precision: 0.8748
- Overall Recall: 0.8887
- Overall F1: 0.8817
- Overall Accuracy: 0.8047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.3967 | 10.53 | 200 | 1.2683 | {'precision': 0.8096256684491978, 'recall': 0.9265605875152999, 'f1': 0.8641552511415526, 'number': 817} | {'precision': 0.5242718446601942, 'recall': 0.453781512605042, 'f1': 0.4864864864864865, 'number': 119} | {'precision': 0.9031339031339032, 'recall': 0.883008356545961, 'f1': 0.8929577464788733, 'number': 1077} | 0.8427 | 0.8753 | 0.8587 | 0.7811 |
0.0418 | 21.05 | 400 | 1.3042 | {'precision': 0.839390386869871, 'recall': 0.8763769889840881, 'f1': 0.8574850299401198, 'number': 817} | {'precision': 0.46923076923076923, 'recall': 0.5126050420168067, 'f1': 0.4899598393574297, 'number': 119} | {'precision': 0.851721094439541, 'recall': 0.8960074280408542, 'f1': 0.8733031674208145, 'number': 1077} | 0.8233 | 0.8654 | 0.8438 | 0.8022 |
0.0152 | 31.58 | 600 | 1.3935 | {'precision': 0.8523255813953489, 'recall': 0.8971848225214198, 'f1': 0.8741800834824089, 'number': 817} | {'precision': 0.5865384615384616, 'recall': 0.5126050420168067, 'f1': 0.5470852017937219, 'number': 119} | {'precision': 0.8781994704324801, 'recall': 0.9238625812441968, 'f1': 0.9004524886877827, 'number': 1077} | 0.8531 | 0.8887 | 0.8706 | 0.8109 |
0.0071 | 42.11 | 800 | 1.5595 | {'precision': 0.857981220657277, 'recall': 0.8947368421052632, 'f1': 0.8759736369083283, 'number': 817} | {'precision': 0.5957446808510638, 'recall': 0.47058823529411764, 'f1': 0.5258215962441314, 'number': 119} | {'precision': 0.8912058023572076, 'recall': 0.9127205199628597, 'f1': 0.9018348623853211, 'number': 1077} | 0.8638 | 0.8793 | 0.8715 | 0.8015 |
0.0043 | 52.63 | 1000 | 1.5937 | {'precision': 0.835214446952596, 'recall': 0.9057527539779682, 'f1': 0.8690546095126248, 'number': 817} | {'precision': 0.6145833333333334, 'recall': 0.4957983193277311, 'f1': 0.5488372093023256, 'number': 119} | {'precision': 0.8835740072202166, 'recall': 0.9090064995357474, 'f1': 0.8961098398169337, 'number': 1077} | 0.8507 | 0.8833 | 0.8667 | 0.7973 |
0.0018 | 63.16 | 1200 | 1.5940 | {'precision': 0.8645465253239105, 'recall': 0.8984088127294981, 'f1': 0.8811524609843937, 'number': 817} | {'precision': 0.5648854961832062, 'recall': 0.6218487394957983, 'f1': 0.5920000000000001, 'number': 119} | {'precision': 0.8923357664233577, 'recall': 0.9080779944289693, 'f1': 0.9001380579843534, 'number': 1077} | 0.8603 | 0.8872 | 0.8736 | 0.8073 |
0.0019 | 73.68 | 1400 | 1.6567 | {'precision': 0.860381861575179, 'recall': 0.8824969400244798, 'f1': 0.8712990936555891, 'number': 817} | {'precision': 0.5462184873949579, 'recall': 0.5462184873949579, 'f1': 0.5462184873949579, 'number': 119} | {'precision': 0.8730017761989343, 'recall': 0.9127205199628597, 'f1': 0.8924194280526555, 'number': 1077} | 0.8493 | 0.8788 | 0.8638 | 0.8039 |
0.0009 | 84.21 | 1600 | 1.7442 | {'precision': 0.8505747126436781, 'recall': 0.9057527539779682, 'f1': 0.8772969768820391, 'number': 817} | {'precision': 0.6057692307692307, 'recall': 0.5294117647058824, 'f1': 0.5650224215246636, 'number': 119} | {'precision': 0.8972477064220183, 'recall': 0.9080779944289693, 'f1': 0.9026303645592985, 'number': 1077} | 0.8629 | 0.8847 | 0.8737 | 0.7977 |
0.001 | 94.74 | 1800 | 1.7450 | {'precision': 0.8391061452513966, 'recall': 0.9192166462668299, 'f1': 0.8773364485981309, 'number': 817} | {'precision': 0.5916666666666667, 'recall': 0.5966386554621849, 'f1': 0.5941422594142259, 'number': 119} | {'precision': 0.9132075471698113, 'recall': 0.8987929433611885, 'f1': 0.9059429106223679, 'number': 1077} | 0.8627 | 0.8892 | 0.8757 | 0.7954 |
0.0005 | 105.26 | 2000 | 1.7725 | {'precision': 0.8432919954904171, 'recall': 0.9155446756425949, 'f1': 0.8779342723004696, 'number': 817} | {'precision': 0.5964912280701754, 'recall': 0.5714285714285714, 'f1': 0.5836909871244635, 'number': 119} | {'precision': 0.9066293183940243, 'recall': 0.9015784586815228, 'f1': 0.9040968342644321, 'number': 1077} | 0.8625 | 0.8877 | 0.8749 | 0.7995 |
0.0002 | 115.79 | 2200 | 1.7327 | {'precision': 0.8607594936708861, 'recall': 0.9155446756425949, 'f1': 0.8873072360616844, 'number': 817} | {'precision': 0.6, 'recall': 0.5798319327731093, 'f1': 0.5897435897435898, 'number': 119} | {'precision': 0.9079925650557621, 'recall': 0.9071494893221913, 'f1': 0.9075708313980492, 'number': 1077} | 0.8709 | 0.8912 | 0.8809 | 0.8060 |
0.0002 | 126.32 | 2400 | 1.7516 | {'precision': 0.8642691415313225, 'recall': 0.9118727050183598, 'f1': 0.8874329958308517, 'number': 817} | {'precision': 0.6106194690265486, 'recall': 0.5798319327731093, 'f1': 0.5948275862068966, 'number': 119} | {'precision': 0.9112149532710281, 'recall': 0.9052924791086351, 'f1': 0.9082440614811365, 'number': 1077} | 0.8748 | 0.8887 | 0.8817 | 0.8047 |
Framework versions
- Transformers 4.28.0
- Pytorch 1.7.1+cpu
- Datasets 2.19.1
- Tokenizers 0.13.3
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.