lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7516
  • Answer: {'precision': 0.8642691415313225, 'recall': 0.9118727050183598, 'f1': 0.8874329958308517, 'number': 817}
  • Header: {'precision': 0.6106194690265486, 'recall': 0.5798319327731093, 'f1': 0.5948275862068966, 'number': 119}
  • Question: {'precision': 0.9112149532710281, 'recall': 0.9052924791086351, 'f1': 0.9082440614811365, 'number': 1077}
  • Overall Precision: 0.8748
  • Overall Recall: 0.8887
  • Overall F1: 0.8817
  • Overall Accuracy: 0.8047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3967 10.53 200 1.2683 {'precision': 0.8096256684491978, 'recall': 0.9265605875152999, 'f1': 0.8641552511415526, 'number': 817} {'precision': 0.5242718446601942, 'recall': 0.453781512605042, 'f1': 0.4864864864864865, 'number': 119} {'precision': 0.9031339031339032, 'recall': 0.883008356545961, 'f1': 0.8929577464788733, 'number': 1077} 0.8427 0.8753 0.8587 0.7811
0.0418 21.05 400 1.3042 {'precision': 0.839390386869871, 'recall': 0.8763769889840881, 'f1': 0.8574850299401198, 'number': 817} {'precision': 0.46923076923076923, 'recall': 0.5126050420168067, 'f1': 0.4899598393574297, 'number': 119} {'precision': 0.851721094439541, 'recall': 0.8960074280408542, 'f1': 0.8733031674208145, 'number': 1077} 0.8233 0.8654 0.8438 0.8022
0.0152 31.58 600 1.3935 {'precision': 0.8523255813953489, 'recall': 0.8971848225214198, 'f1': 0.8741800834824089, 'number': 817} {'precision': 0.5865384615384616, 'recall': 0.5126050420168067, 'f1': 0.5470852017937219, 'number': 119} {'precision': 0.8781994704324801, 'recall': 0.9238625812441968, 'f1': 0.9004524886877827, 'number': 1077} 0.8531 0.8887 0.8706 0.8109
0.0071 42.11 800 1.5595 {'precision': 0.857981220657277, 'recall': 0.8947368421052632, 'f1': 0.8759736369083283, 'number': 817} {'precision': 0.5957446808510638, 'recall': 0.47058823529411764, 'f1': 0.5258215962441314, 'number': 119} {'precision': 0.8912058023572076, 'recall': 0.9127205199628597, 'f1': 0.9018348623853211, 'number': 1077} 0.8638 0.8793 0.8715 0.8015
0.0043 52.63 1000 1.5937 {'precision': 0.835214446952596, 'recall': 0.9057527539779682, 'f1': 0.8690546095126248, 'number': 817} {'precision': 0.6145833333333334, 'recall': 0.4957983193277311, 'f1': 0.5488372093023256, 'number': 119} {'precision': 0.8835740072202166, 'recall': 0.9090064995357474, 'f1': 0.8961098398169337, 'number': 1077} 0.8507 0.8833 0.8667 0.7973
0.0018 63.16 1200 1.5940 {'precision': 0.8645465253239105, 'recall': 0.8984088127294981, 'f1': 0.8811524609843937, 'number': 817} {'precision': 0.5648854961832062, 'recall': 0.6218487394957983, 'f1': 0.5920000000000001, 'number': 119} {'precision': 0.8923357664233577, 'recall': 0.9080779944289693, 'f1': 0.9001380579843534, 'number': 1077} 0.8603 0.8872 0.8736 0.8073
0.0019 73.68 1400 1.6567 {'precision': 0.860381861575179, 'recall': 0.8824969400244798, 'f1': 0.8712990936555891, 'number': 817} {'precision': 0.5462184873949579, 'recall': 0.5462184873949579, 'f1': 0.5462184873949579, 'number': 119} {'precision': 0.8730017761989343, 'recall': 0.9127205199628597, 'f1': 0.8924194280526555, 'number': 1077} 0.8493 0.8788 0.8638 0.8039
0.0009 84.21 1600 1.7442 {'precision': 0.8505747126436781, 'recall': 0.9057527539779682, 'f1': 0.8772969768820391, 'number': 817} {'precision': 0.6057692307692307, 'recall': 0.5294117647058824, 'f1': 0.5650224215246636, 'number': 119} {'precision': 0.8972477064220183, 'recall': 0.9080779944289693, 'f1': 0.9026303645592985, 'number': 1077} 0.8629 0.8847 0.8737 0.7977
0.001 94.74 1800 1.7450 {'precision': 0.8391061452513966, 'recall': 0.9192166462668299, 'f1': 0.8773364485981309, 'number': 817} {'precision': 0.5916666666666667, 'recall': 0.5966386554621849, 'f1': 0.5941422594142259, 'number': 119} {'precision': 0.9132075471698113, 'recall': 0.8987929433611885, 'f1': 0.9059429106223679, 'number': 1077} 0.8627 0.8892 0.8757 0.7954
0.0005 105.26 2000 1.7725 {'precision': 0.8432919954904171, 'recall': 0.9155446756425949, 'f1': 0.8779342723004696, 'number': 817} {'precision': 0.5964912280701754, 'recall': 0.5714285714285714, 'f1': 0.5836909871244635, 'number': 119} {'precision': 0.9066293183940243, 'recall': 0.9015784586815228, 'f1': 0.9040968342644321, 'number': 1077} 0.8625 0.8877 0.8749 0.7995
0.0002 115.79 2200 1.7327 {'precision': 0.8607594936708861, 'recall': 0.9155446756425949, 'f1': 0.8873072360616844, 'number': 817} {'precision': 0.6, 'recall': 0.5798319327731093, 'f1': 0.5897435897435898, 'number': 119} {'precision': 0.9079925650557621, 'recall': 0.9071494893221913, 'f1': 0.9075708313980492, 'number': 1077} 0.8709 0.8912 0.8809 0.8060
0.0002 126.32 2400 1.7516 {'precision': 0.8642691415313225, 'recall': 0.9118727050183598, 'f1': 0.8874329958308517, 'number': 817} {'precision': 0.6106194690265486, 'recall': 0.5798319327731093, 'f1': 0.5948275862068966, 'number': 119} {'precision': 0.9112149532710281, 'recall': 0.9052924791086351, 'f1': 0.9082440614811365, 'number': 1077} 0.8748 0.8887 0.8817 0.8047

Framework versions

  • Transformers 4.28.0
  • Pytorch 1.7.1+cpu
  • Datasets 2.19.1
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.