MedQA_L3_1000steps_1e8rate_05beta_CSFTDPO
This model is a fine-tuned version of tsavage68/MedQA_L3_1000steps_1e6rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6949
- Rewards/chosen: 0.0221
- Rewards/rejected: 0.0244
- Rewards/accuracies: 0.4725
- Rewards/margins: -0.0023
- Logps/rejected: -33.8059
- Logps/chosen: -31.2843
- Logits/rejected: -0.7321
- Logits/chosen: -0.7315
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6981 | 0.0489 | 50 | 0.6908 | 0.0076 | 0.0017 | 0.5473 | 0.0059 | -33.8515 | -31.3133 | -0.7324 | -0.7317 |
0.6964 | 0.0977 | 100 | 0.6933 | 0.0126 | 0.0116 | 0.5077 | 0.0010 | -33.8316 | -31.3032 | -0.7322 | -0.7315 |
0.6942 | 0.1466 | 150 | 0.6946 | 0.0165 | 0.0180 | 0.5011 | -0.0015 | -33.8188 | -31.2955 | -0.7321 | -0.7314 |
0.6897 | 0.1954 | 200 | 0.6927 | -0.0100 | -0.0122 | 0.5055 | 0.0022 | -33.8792 | -31.3486 | -0.7319 | -0.7312 |
0.6908 | 0.2443 | 250 | 0.6916 | 0.0078 | 0.0034 | 0.5385 | 0.0044 | -33.8481 | -31.3129 | -0.7318 | -0.7311 |
0.6912 | 0.2931 | 300 | 0.6931 | -0.0060 | -0.0072 | 0.4923 | 0.0012 | -33.8693 | -31.3405 | -0.7322 | -0.7315 |
0.7003 | 0.3420 | 350 | 0.6949 | -0.0119 | -0.0096 | 0.4725 | -0.0024 | -33.8740 | -31.3524 | -0.7323 | -0.7316 |
0.6967 | 0.3908 | 400 | 0.6957 | -0.0055 | -0.0019 | 0.4791 | -0.0036 | -33.8586 | -31.3395 | -0.7320 | -0.7313 |
0.6921 | 0.4397 | 450 | 0.6961 | -0.0030 | 0.0015 | 0.4725 | -0.0045 | -33.8518 | -31.3345 | -0.7321 | -0.7315 |
0.6949 | 0.4885 | 500 | 0.6941 | 0.0163 | 0.0170 | 0.4879 | -0.0007 | -33.8208 | -31.2958 | -0.7325 | -0.7318 |
0.7052 | 0.5374 | 550 | 0.6925 | 0.0081 | 0.0056 | 0.5187 | 0.0025 | -33.8437 | -31.3123 | -0.7320 | -0.7314 |
0.6881 | 0.5862 | 600 | 0.6944 | 0.0116 | 0.0129 | 0.5077 | -0.0013 | -33.8290 | -31.3053 | -0.7321 | -0.7315 |
0.6888 | 0.6351 | 650 | 0.6917 | 0.0113 | 0.0074 | 0.5121 | 0.0040 | -33.8401 | -31.3058 | -0.7326 | -0.7319 |
0.6826 | 0.6839 | 700 | 0.6955 | -0.0009 | 0.0026 | 0.4659 | -0.0035 | -33.8497 | -31.3303 | -0.7323 | -0.7316 |
0.6938 | 0.7328 | 750 | 0.6928 | 0.0252 | 0.0232 | 0.5033 | 0.0020 | -33.8084 | -31.2782 | -0.7324 | -0.7317 |
0.6971 | 0.7816 | 800 | 0.6939 | 0.0263 | 0.0265 | 0.4923 | -0.0001 | -33.8019 | -31.2758 | -0.7323 | -0.7316 |
0.6954 | 0.8305 | 850 | 0.6948 | 0.0223 | 0.0244 | 0.4747 | -0.0021 | -33.8060 | -31.2840 | -0.7321 | -0.7315 |
0.6983 | 0.8793 | 900 | 0.6949 | 0.0221 | 0.0244 | 0.4725 | -0.0023 | -33.8059 | -31.2843 | -0.7321 | -0.7315 |
0.6832 | 0.9282 | 950 | 0.6949 | 0.0221 | 0.0244 | 0.4725 | -0.0023 | -33.8059 | -31.2843 | -0.7321 | -0.7315 |
0.6916 | 0.9770 | 1000 | 0.6949 | 0.0221 | 0.0244 | 0.4725 | -0.0023 | -33.8059 | -31.2843 | -0.7321 | -0.7315 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tsavage68/MedQA_L3_1000steps_1e8rate_05beta_CSFTDPO
Base model
meta-llama/Meta-Llama-3-8B-Instruct
Finetuned
tsavage68/MedQA_L3_1000steps_1e6rate_SFT