MedQA_L3_1000steps_1e7rate_01beta_CSFTDPO
This model is a fine-tuned version of tsavage68/MedQA_L3_1000steps_1e6rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6556
- Rewards/chosen: 0.3104
- Rewards/rejected: 0.2288
- Rewards/accuracies: 0.7187
- Rewards/margins: 0.0816
- Logps/rejected: -31.5670
- Logps/chosen: -28.2248
- Logits/rejected: -0.7354
- Logits/chosen: -0.7346
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6932 | 0.0489 | 50 | 0.6927 | -0.0017 | -0.0025 | 0.5297 | 0.0008 | -33.8801 | -31.3453 | -0.7320 | -0.7313 |
0.691 | 0.0977 | 100 | 0.6894 | 0.0852 | 0.0776 | 0.6505 | 0.0076 | -33.0791 | -30.4769 | -0.7328 | -0.7321 |
0.6779 | 0.1466 | 150 | 0.6824 | 0.1496 | 0.1271 | 0.6791 | 0.0225 | -32.5836 | -29.8325 | -0.7314 | -0.7307 |
0.6695 | 0.1954 | 200 | 0.6773 | 0.0689 | 0.0354 | 0.6945 | 0.0335 | -33.5008 | -30.6395 | -0.7313 | -0.7306 |
0.6792 | 0.2443 | 250 | 0.6730 | 0.1279 | 0.0855 | 0.7231 | 0.0424 | -32.9998 | -30.0495 | -0.7313 | -0.7306 |
0.6641 | 0.2931 | 300 | 0.6678 | 0.1588 | 0.1052 | 0.7297 | 0.0536 | -32.8025 | -29.7403 | -0.7323 | -0.7315 |
0.665 | 0.3420 | 350 | 0.6652 | 0.2014 | 0.1419 | 0.7187 | 0.0595 | -32.4354 | -29.3144 | -0.7344 | -0.7336 |
0.6504 | 0.3908 | 400 | 0.6621 | 0.2655 | 0.1993 | 0.7363 | 0.0662 | -31.8619 | -28.6732 | -0.7340 | -0.7332 |
0.6533 | 0.4397 | 450 | 0.6607 | 0.2838 | 0.2142 | 0.7319 | 0.0697 | -31.7132 | -28.4903 | -0.7347 | -0.7339 |
0.66 | 0.4885 | 500 | 0.6588 | 0.3223 | 0.2481 | 0.7187 | 0.0742 | -31.3734 | -28.1056 | -0.7350 | -0.7342 |
0.6373 | 0.5374 | 550 | 0.6578 | 0.3176 | 0.2410 | 0.7143 | 0.0766 | -31.4445 | -28.1521 | -0.7355 | -0.7347 |
0.6608 | 0.5862 | 600 | 0.6566 | 0.3164 | 0.2373 | 0.7187 | 0.0792 | -31.4823 | -28.1640 | -0.7357 | -0.7349 |
0.6457 | 0.6351 | 650 | 0.6560 | 0.3040 | 0.2233 | 0.7187 | 0.0807 | -31.6215 | -28.2882 | -0.7350 | -0.7342 |
0.657 | 0.6839 | 700 | 0.6554 | 0.3088 | 0.2267 | 0.7165 | 0.0820 | -31.5874 | -28.2407 | -0.7349 | -0.7341 |
0.6597 | 0.7328 | 750 | 0.6560 | 0.3104 | 0.2296 | 0.7187 | 0.0808 | -31.5590 | -28.2246 | -0.7355 | -0.7346 |
0.6642 | 0.7816 | 800 | 0.6553 | 0.3115 | 0.2291 | 0.7209 | 0.0824 | -31.5639 | -28.2138 | -0.7353 | -0.7345 |
0.673 | 0.8305 | 850 | 0.6555 | 0.3114 | 0.2296 | 0.7231 | 0.0818 | -31.5592 | -28.2146 | -0.7352 | -0.7344 |
0.6659 | 0.8793 | 900 | 0.6556 | 0.3142 | 0.2324 | 0.7143 | 0.0818 | -31.5308 | -28.1868 | -0.7357 | -0.7349 |
0.6533 | 0.9282 | 950 | 0.6556 | 0.3104 | 0.2288 | 0.7187 | 0.0816 | -31.5668 | -28.2246 | -0.7354 | -0.7346 |
0.6255 | 0.9770 | 1000 | 0.6556 | 0.3104 | 0.2288 | 0.7187 | 0.0816 | -31.5670 | -28.2248 | -0.7354 | -0.7346 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tsavage68/MedQA_L3_1000steps_1e7rate_01beta_CSFTDPO
Base model
meta-llama/Meta-Llama-3-8B-Instruct
Finetuned
tsavage68/MedQA_L3_1000steps_1e6rate_SFT