IE_L3_1000steps_1e5rate_03beta_SFT
This model is a fine-tuned version of tsavage68/IE_L3_1000steps_1e6rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1802
- Rewards/chosen: -1.8241
- Rewards/rejected: -17.1487
- Rewards/accuracies: 0.7400
- Rewards/margins: 15.3246
- Logps/rejected: -132.7896
- Logps/chosen: -88.8782
- Logits/rejected: -0.8401
- Logits/chosen: -0.7195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1906 | 0.4 | 50 | 0.1802 | -1.7929 | -17.0298 | 0.7400 | 15.2369 | -132.3931 | -88.7740 | -0.8398 | -0.7194 |
0.1386 | 0.8 | 100 | 0.1802 | -1.7771 | -17.0460 | 0.7400 | 15.2689 | -132.4471 | -88.7214 | -0.8398 | -0.7192 |
0.1386 | 1.2 | 150 | 0.1802 | -1.7982 | -17.0858 | 0.7400 | 15.2876 | -132.5800 | -88.7917 | -0.8401 | -0.7193 |
0.1733 | 1.6 | 200 | 0.1802 | -1.7978 | -17.0381 | 0.7400 | 15.2403 | -132.4209 | -88.7903 | -0.8396 | -0.7190 |
0.2253 | 2.0 | 250 | 0.1802 | -1.7877 | -17.0275 | 0.7400 | 15.2398 | -132.3854 | -88.7567 | -0.8395 | -0.7189 |
0.1386 | 2.4 | 300 | 0.1802 | -1.8012 | -17.0499 | 0.7400 | 15.2487 | -132.4602 | -88.8018 | -0.8399 | -0.7195 |
0.1213 | 2.8 | 350 | 0.1802 | -1.7983 | -17.0687 | 0.7400 | 15.2705 | -132.5230 | -88.7921 | -0.8395 | -0.7189 |
0.1906 | 3.2 | 400 | 0.1802 | -1.7995 | -17.0794 | 0.7400 | 15.2799 | -132.5586 | -88.7960 | -0.8403 | -0.7193 |
0.1906 | 3.6 | 450 | 0.1802 | -1.8034 | -17.0941 | 0.7400 | 15.2908 | -132.6077 | -88.8090 | -0.8399 | -0.7193 |
0.2079 | 4.0 | 500 | 0.1802 | -1.8158 | -17.1281 | 0.7400 | 15.3123 | -132.7209 | -88.8505 | -0.8397 | -0.7185 |
0.156 | 4.4 | 550 | 0.1802 | -1.8012 | -17.1383 | 0.7400 | 15.3371 | -132.7549 | -88.8016 | -0.8406 | -0.7196 |
0.1213 | 4.8 | 600 | 0.1802 | -1.7944 | -17.0830 | 0.7400 | 15.2886 | -132.5706 | -88.7792 | -0.8403 | -0.7195 |
0.1906 | 5.2 | 650 | 0.1802 | -1.7935 | -17.1490 | 0.7400 | 15.3555 | -132.7905 | -88.7761 | -0.8407 | -0.7197 |
0.2426 | 5.6 | 700 | 0.1802 | -1.7991 | -17.1635 | 0.7400 | 15.3644 | -132.8388 | -88.7946 | -0.8399 | -0.7188 |
0.2599 | 6.0 | 750 | 0.1802 | -1.7918 | -17.1508 | 0.7400 | 15.3590 | -132.7967 | -88.7704 | -0.8392 | -0.7182 |
0.1213 | 6.4 | 800 | 0.1802 | -1.8045 | -17.1834 | 0.7400 | 15.3789 | -132.9053 | -88.8128 | -0.8395 | -0.7183 |
0.2426 | 6.8 | 850 | 0.1802 | -1.8050 | -17.1755 | 0.7400 | 15.3706 | -132.8791 | -88.8143 | -0.8416 | -0.7202 |
0.1733 | 7.2 | 900 | 0.1802 | -1.7886 | -17.1414 | 0.7400 | 15.3528 | -132.7653 | -88.7597 | -0.8403 | -0.7193 |
0.1386 | 7.6 | 950 | 0.1802 | -1.8171 | -17.1472 | 0.7400 | 15.3300 | -132.7844 | -88.8548 | -0.8401 | -0.7195 |
0.156 | 8.0 | 1000 | 0.1802 | -1.8241 | -17.1487 | 0.7400 | 15.3246 | -132.7896 | -88.8782 | -0.8401 | -0.7195 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.0.0+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tsavage68/IE_L3_1000steps_1e5rate_03beta_SFT
Base model
meta-llama/Meta-Llama-3-8B-Instruct
Finetuned
tsavage68/IE_L3_1000steps_1e6rate_SFT