MiniCPM-2B-Text-Embedding-cft
Description
This is a fine-tuned version of MiniCPM-2B-dpo-bf16 to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets.
⚠️ The training process ignores hard-negative samples and treat other in-batch samples + their entailments as in-batch negatives. ⚠️ If you want to see the version utilizing hard-negative examples in the training process, please refer here
Base Model
Usage
- Clone MiniCPM-2B-dpo-bf16 repository
git clone https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16
- Change a tokenizer setting in
tokenizer_config.json
"add_eos_token": true
- Use the model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np
class MiniCPMSentenceEmbedding:
def __init__(self, model_path='openbmb/MiniCPM-2B-dpo-bf16', adapter_path=None):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path,
torch_dtype=torch.bfloat16,
device_map='cuda',
trust_remote_code=True)
if adapter_path != None:
# Load fine-tuned LoRA
self.model.load_adapter(adapter_path)
def get_last_hidden_state(self, text):
inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
with torch.no_grad():
out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
return out.squeeze().float().cpu().numpy()
def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
"""
Returns a list of embeddings for the given sentences.
Args:
sentences: List of sentences to encode
Returns:
List of embeddings for the given sentences
"""
out = []
for s in sentences:
out.append(self.get_last_hidden_state(s))
return out
minicpm_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/MiniCPM-2B-Text-Embedding-cft-pos')
example_sentences = ["I don't like apples", "I like apples"]
encoded_sentences = minicpm_sentence_embedding.encode(example_sentences)
print(encoded_sentences)
Training Details
⚠️ The training process ignores hard-negative samples and treat other in-batch samples + their entailments as in-batch negatives. ⚠️
Training Details | Value |
---|---|
Loss | InfoNCE |
Batch Size | 40 |
InfoNCE Temperature | 0.05 |
Learning Rate | 1e-05 |
Warmup Steps | 100 |
Learning Rate Scheduler | CosineAnnealingLR |
LoRA Rank | 8 |
LoRA Alpha | 32 |
LoRA Dropout | 0.1 |
Training Precision | bf16 |
Max Epoch | 1 |
GPU | RTX3090 |
Num GPUs | 4 |
Training Scripts
(coming soon...)
Evaluation Results
(coming soon...)
Contributors
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
Foot Notes
This project is the topic-free final project of the Tsinghua University NLP course for Spring 2024.
Inference API (serverless) does not yet support transformers models for this pipeline type.