Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: EleutherAI/pythia-160m-deduped
load_in_8bit: false
datasets:
  - path: teknium/GPT4-LLM-Cleaned
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter: lora
lora_model_dir:
sequence_len: 512
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
  - query_key_value
  - dense
  - dense_h_to_4h
  - dense_4h_to_h
lora_target_linear:
lora_fan_in_fan_out: true  # pythia/GPTNeoX lora specific
output_dir: ./outputs/lora-alpaca-pythia
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 4
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: false
tf32: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
weight_decay: 0.1
evals_per_epoch: 4
logging_steps: 1
push_to_hub: tommyp111/pythia-160m-deduped-alpaca-lora
wandb_project: pythia-alpaca-lora
wandb_name: pythia-160m-grad-norm

optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
gradient_checkpointing: true
warmup_steps: 10000

outputs/lora-alpaca-pythia

This model is a fine-tuned version of EleutherAI/pythia-160m-deduped on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
8.3121 0.0003 1 28.8947
8.51 0.2502 798 28.8493
7.1252 0.5003 1596 28.6938
11.0054 0.7505 2394 27.8628
2.7374 1.0006 3192 5.7286
3.3225 1.2508 3990 3.8328
2.8093 1.5009 4788 3.0960
2.5311 1.7511 5586 2.7825
1.9888 2.0013 6384 2.6022
2.1802 2.2514 7182 2.4945
2.3964 2.5016 7980 2.3910
2.1141 2.7517 8778 2.3618
2.7874 3.0019 9576 2.3030
2.2354 3.2520 10374 2.2600
2.0795 3.5022 11172 2.2918
2.2697 3.7524 11970 2.2758

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tommyp111/pythia-160m-deduped-alpaca-lora

Adapter
(3)
this model

Collection including tommyp111/pythia-160m-deduped-alpaca-lora