SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-quora-duplicate-questions")
# Run inference
sentences = [
"What is a fetish?",
"What's a fetish?",
"Is it good to read sex stories?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7707 |
cosine_accuracy_threshold | 0.817 |
cosine_f1 | 0.7086 |
cosine_f1_threshold | 0.742 |
cosine_precision | 0.6033 |
cosine_recall | 0.8586 |
cosine_ap | 0.7191 |
manhattan_accuracy | 0.7729 |
manhattan_accuracy_threshold | 181.4664 |
manhattan_f1 | 0.7083 |
manhattan_f1_threshold | 222.9119 |
manhattan_precision | 0.6063 |
manhattan_recall | 0.8515 |
manhattan_ap | 0.7188 |
euclidean_accuracy | 0.7736 |
euclidean_accuracy_threshold | 8.3566 |
euclidean_f1 | 0.7088 |
euclidean_f1_threshold | 10.0929 |
euclidean_precision | 0.6079 |
euclidean_recall | 0.8499 |
euclidean_ap | 0.7191 |
dot_accuracy | 0.7442 |
dot_accuracy_threshold | 168.5663 |
dot_f1 | 0.6832 |
dot_f1_threshold | 142.4585 |
dot_precision | 0.5665 |
dot_recall | 0.8603 |
dot_ap | 0.6694 |
max_accuracy | 0.7736 |
max_accuracy_threshold | 181.4664 |
max_f1 | 0.7088 |
max_f1_threshold | 222.9119 |
max_precision | 0.6079 |
max_recall | 0.8603 |
max_ap | 0.7191 |
Paraphrase Mining
- Dataset:
dev
- Evaluated with
ParaphraseMiningEvaluator
Metric | Value |
---|---|
average_precision | 0.478 |
f1 | 0.5119 |
precision | 0.4683 |
recall | 0.5645 |
threshold | 0.8193 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9654 |
cosine_accuracy@3 | 0.9904 |
cosine_accuracy@5 | 0.9948 |
cosine_accuracy@10 | 0.9974 |
cosine_precision@1 | 0.9654 |
cosine_precision@3 | 0.4355 |
cosine_precision@5 | 0.2806 |
cosine_precision@10 | 0.1493 |
cosine_recall@1 | 0.8251 |
cosine_recall@3 | 0.9549 |
cosine_recall@5 | 0.9758 |
cosine_recall@10 | 0.9898 |
cosine_ndcg@10 | 0.9786 |
cosine_mrr@10 | 0.9786 |
cosine_map@100 | 0.9714 |
dot_accuracy@1 | 0.9512 |
dot_accuracy@3 | 0.985 |
dot_accuracy@5 | 0.9914 |
dot_accuracy@10 | 0.9964 |
dot_precision@1 | 0.9512 |
dot_precision@3 | 0.4303 |
dot_precision@5 | 0.2788 |
dot_precision@10 | 0.149 |
dot_recall@1 | 0.8119 |
dot_recall@3 | 0.946 |
dot_recall@5 | 0.9708 |
dot_recall@10 | 0.9884 |
dot_ndcg@10 | 0.9703 |
dot_mrr@10 | 0.9693 |
dot_map@100 | 0.96 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 207,326 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 6 tokens
- mean: 13.75 tokens
- max: 42 tokens
- min: 6 tokens
- mean: 13.74 tokens
- max: 44 tokens
- 1: ~100.00%
- Samples:
sentence_0 sentence_1 label How do I improve writing skill by myself?
How can I improve writing skills?
1
Is it best to switch to Node.js from PHP?
Should I switch to Node.js or continue using PHP?
1
What do Hillary Clinton's supporters say when confronted with all her lies and scandals?
What do Clinton supporters say when confronted with her scandals such as the emails and 'Clinton Cash'?
1
- Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
- per_device_train_batch_size: 64
- per_device_eval_batch_size: 64
- num_train_epochs: 1
- round_robin_sampler: True
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- prediction_loss_only: False
- per_device_train_batch_size: 64
- per_device_eval_batch_size: 64
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.0
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: None
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- round_robin_sampler: True
Training Logs
Epoch | Step | Training Loss | cosine_accuracy | cosine_map@100 | dev_average_precision |
---|---|---|---|---|---|
0 | 0 | - | 0.7661 | 0.9371 | 0.4137 |
0.1543 | 500 | 0.1055 | 0.7632 | 0.9620 | 0.4731 |
0.3086 | 1000 | 0.0677 | 0.7608 | 0.9675 | 0.4732 |
0.4630 | 1500 | 0.0612 | 0.7663 | 0.9710 | 0.4856 |
0.6173 | 2000 | 0.0584 | 0.7719 | 0.9693 | 0.4925 |
0.7716 | 2500 | 0.0506 | 0.7714 | 0.9709 | 0.4808 |
0.9259 | 3000 | 0.0488 | 0.7708 | 0.9713 | 0.4784 |
1.0 | 3240 | - | 0.7707 | 0.9714 | 0.4780 |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 2.7.0.dev0
- Transformers: 4.39.3
- PyTorch: 2.1.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tomaarsen/stsb-distilbert-base-quora-duplicate-questions
Base model
sentence-transformers/stsb-distilbert-baseEvaluation results
- Cosine Accuracy on Unknownself-reported0.771
- Cosine Accuracy Threshold on Unknownself-reported0.817
- Cosine F1 on Unknownself-reported0.709
- Cosine F1 Threshold on Unknownself-reported0.742
- Cosine Precision on Unknownself-reported0.603
- Cosine Recall on Unknownself-reported0.859
- Cosine Ap on Unknownself-reported0.719
- Manhattan Accuracy on Unknownself-reported0.773
- Manhattan Accuracy Threshold on Unknownself-reported181.466
- Manhattan F1 on Unknownself-reported0.708