Edit model card

SentenceTransformer based on sentence-transformers/stsb-distilbert-base

This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-quora-duplicate-questions")
# Run inference
sentences = [
    "What is a fetish?",
    "What's a fetish?",
    "Is it good to read sex stories?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.7707
cosine_accuracy_threshold 0.817
cosine_f1 0.7086
cosine_f1_threshold 0.742
cosine_precision 0.6033
cosine_recall 0.8586
cosine_ap 0.7191
manhattan_accuracy 0.7729
manhattan_accuracy_threshold 181.4664
manhattan_f1 0.7083
manhattan_f1_threshold 222.9119
manhattan_precision 0.6063
manhattan_recall 0.8515
manhattan_ap 0.7188
euclidean_accuracy 0.7736
euclidean_accuracy_threshold 8.3566
euclidean_f1 0.7088
euclidean_f1_threshold 10.0929
euclidean_precision 0.6079
euclidean_recall 0.8499
euclidean_ap 0.7191
dot_accuracy 0.7442
dot_accuracy_threshold 168.5663
dot_f1 0.6832
dot_f1_threshold 142.4585
dot_precision 0.5665
dot_recall 0.8603
dot_ap 0.6694
max_accuracy 0.7736
max_accuracy_threshold 181.4664
max_f1 0.7088
max_f1_threshold 222.9119
max_precision 0.6079
max_recall 0.8603
max_ap 0.7191

Paraphrase Mining

Metric Value
average_precision 0.478
f1 0.5119
precision 0.4683
recall 0.5645
threshold 0.8193

Information Retrieval

Metric Value
cosine_accuracy@1 0.9654
cosine_accuracy@3 0.9904
cosine_accuracy@5 0.9948
cosine_accuracy@10 0.9974
cosine_precision@1 0.9654
cosine_precision@3 0.4355
cosine_precision@5 0.2806
cosine_precision@10 0.1493
cosine_recall@1 0.8251
cosine_recall@3 0.9549
cosine_recall@5 0.9758
cosine_recall@10 0.9898
cosine_ndcg@10 0.9786
cosine_mrr@10 0.9786
cosine_map@100 0.9714
dot_accuracy@1 0.9512
dot_accuracy@3 0.985
dot_accuracy@5 0.9914
dot_accuracy@10 0.9964
dot_precision@1 0.9512
dot_precision@3 0.4303
dot_precision@5 0.2788
dot_precision@10 0.149
dot_recall@1 0.8119
dot_recall@3 0.946
dot_recall@5 0.9708
dot_recall@10 0.9884
dot_ndcg@10 0.9703
dot_mrr@10 0.9693
dot_map@100 0.96

Training Details

Training Dataset

Unnamed Dataset

  • Size: 207,326 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 6 tokens
    • mean: 13.75 tokens
    • max: 42 tokens
    • min: 6 tokens
    • mean: 13.74 tokens
    • max: 44 tokens
    • 1: ~100.00%
  • Samples:
    sentence_0 sentence_1 label
    How do I improve writing skill by myself? How can I improve writing skills? 1
    Is it best to switch to Node.js from PHP? Should I switch to Node.js or continue using PHP? 1
    What do Hillary Clinton's supporters say when confronted with all her lies and scandals? What do Clinton supporters say when confronted with her scandals such as the emails and 'Clinton Cash'? 1
  • Loss: sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 1
  • round_robin_sampler: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: False
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • round_robin_sampler: True

Training Logs

Epoch Step Training Loss cosine_accuracy cosine_map@100 dev_average_precision
0 0 - 0.7661 0.9371 0.4137
0.1543 500 0.1055 0.7632 0.9620 0.4731
0.3086 1000 0.0677 0.7608 0.9675 0.4732
0.4630 1500 0.0612 0.7663 0.9710 0.4856
0.6173 2000 0.0584 0.7719 0.9693 0.4925
0.7716 2500 0.0506 0.7714 0.9709 0.4808
0.9259 3000 0.0488 0.7708 0.9713 0.4784
1.0 3240 - 0.7707 0.9714 0.4780

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 2.7.0.dev0
  • Transformers: 4.39.3
  • PyTorch: 2.1.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
10
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tomaarsen/stsb-distilbert-base-quora-duplicate-questions

Finetuned
(6)
this model

Evaluation results