judge_answer___35_deberta_large_enwiki-answerability-2411

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2672
  • Accuracy: 0.9451
  • Precision: 0.9448
  • Recall: 0.9448
  • F1: 0.9448
  • F0.5: 0.9448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 F0.5
0.2671 0.0340 1000 0.2442 0.9172 0.9081 0.9273 0.9176 0.9119
0.2188 0.0680 2000 0.2383 0.9241 0.9114 0.9387 0.9248 0.9167
0.2204 0.1020 3000 0.2081 0.9287 0.9449 0.9098 0.9270 0.9376
0.2101 0.1360 4000 0.2258 0.93 0.9294 0.9299 0.9297 0.9295
0.2087 0.1700 5000 0.2156 0.9238 0.9566 0.8871 0.9206 0.9419
0.2006 0.2040 6000 0.2123 0.9331 0.9307 0.9351 0.9329 0.9316
0.1973 0.2380 7000 0.1832 0.9387 0.9377 0.9392 0.9384 0.9380
0.2055 0.2720 8000 0.2003 0.9338 0.9399 0.9263 0.9330 0.9371
0.2002 0.3060 9000 0.2280 0.9351 0.9271 0.9438 0.9354 0.9304
0.1927 0.3400 10000 0.2304 0.9333 0.9106 0.9603 0.9348 0.9201
0.2001 0.3740 11000 0.1964 0.9349 0.9395 0.9289 0.9342 0.9374
0.1918 0.4080 12000 0.1843 0.9356 0.9364 0.9340 0.9352 0.9360
0.1913 0.4420 13000 0.2252 0.9321 0.9609 0.9 0.9295 0.9481
0.1852 0.4760 14000 0.1806 0.9362 0.9272 0.9459 0.9365 0.9309
0.1796 0.5100 15000 0.2018 0.9423 0.9482 0.9351 0.9416 0.9456
0.1862 0.5441 16000 0.2066 0.9344 0.9446 0.9222 0.9332 0.9400
0.1942 0.5781 17000 0.2123 0.9367 0.9189 0.9572 0.9376 0.9263
0.1864 0.6121 18000 0.1822 0.9377 0.9564 0.9165 0.9360 0.9482
0.1939 0.6461 19000 0.2125 0.9359 0.9447 0.9253 0.9349 0.9408
0.185 0.6801 20000 0.2039 0.9364 0.9312 0.9418 0.9364 0.9333
0.1844 0.7141 21000 0.1742 0.9392 0.9396 0.9381 0.9389 0.9393
0.1818 0.7481 22000 0.1892 0.9405 0.9407 0.9397 0.9402 0.9405
0.1828 0.7821 23000 0.2015 0.9379 0.9502 0.9237 0.9367 0.9447
0.1771 0.8161 24000 0.1985 0.94 0.9452 0.9335 0.9393 0.9428
0.1772 0.8501 25000 0.1672 0.9426 0.9540 0.9294 0.9415 0.9489
0.1859 0.8841 26000 0.1748 0.9362 0.9126 0.9639 0.9376 0.9225
0.189 0.9181 27000 0.1642 0.9464 0.9427 0.95 0.9463 0.9442
0.1774 0.9521 28000 0.1767 0.9462 0.9369 0.9562 0.9464 0.9407
0.1658 0.9861 29000 0.1958 0.9431 0.9343 0.9526 0.9433 0.9379
0.1574 1.0201 30000 0.2119 0.9428 0.9329 0.9536 0.9432 0.9370
0.1588 1.0541 31000 0.1801 0.9408 0.9548 0.9247 0.9395 0.9486
0.1578 1.0881 32000 0.2292 0.9418 0.9525 0.9294 0.9408 0.9478
0.1597 1.1221 33000 0.1971 0.9415 0.9417 0.9407 0.9412 0.9415
0.155 1.1561 34000 0.2235 0.9426 0.9409 0.9438 0.9424 0.9415
0.1594 1.1901 35000 0.1763 0.9449 0.9425 0.9469 0.9447 0.9434
0.1655 1.2241 36000 0.1773 0.9444 0.9420 0.9464 0.9442 0.9429
0.1682 1.2581 37000 0.2021 0.94 0.9383 0.9412 0.9398 0.9389
0.1495 1.2921 38000 0.1954 0.9421 0.9364 0.9479 0.9421 0.9386
0.1567 1.3261 39000 0.2083 0.9451 0.9481 0.9412 0.9446 0.9467
0.1687 1.3601 40000 0.1800 0.9415 0.9573 0.9237 0.9402 0.9504
0.1599 1.3941 41000 0.1816 0.9444 0.9580 0.9289 0.9432 0.9520
0.1655 1.4281 42000 0.1852 0.9472 0.9423 0.9521 0.9472 0.9443
0.1579 1.4621 43000 0.1888 0.9446 0.9452 0.9433 0.9443 0.9449
0.1606 1.4961 44000 0.1880 0.9456 0.9381 0.9536 0.9458 0.9412
0.1522 1.5301 45000 0.2139 0.9464 0.9464 0.9459 0.9461 0.9463
0.1497 1.5641 46000 0.1971 0.9436 0.9470 0.9392 0.9431 0.9454
0.159 1.5982 47000 0.1935 0.9418 0.9192 0.9680 0.9430 0.9286
0.1582 1.6322 48000 0.1841 0.9441 0.9344 0.9546 0.9444 0.9384
0.1505 1.6662 49000 0.2033 0.9405 0.9322 0.9495 0.9408 0.9356
0.1503 1.7002 50000 0.1974 0.9454 0.9377 0.9536 0.9456 0.9408
0.1651 1.7342 51000 0.1995 0.9438 0.9335 0.9552 0.9442 0.9378
0.1544 1.7682 52000 0.1831 0.9462 0.9325 0.9613 0.9467 0.9381
0.1618 1.8022 53000 0.2018 0.9413 0.9577 0.9227 0.9399 0.9505
0.1585 1.8362 54000 0.1897 0.9456 0.9342 0.9582 0.9461 0.9389
0.1604 1.8702 55000 0.1774 0.9472 0.9478 0.9459 0.9469 0.9474
0.1598 1.9042 56000 0.1740 0.9451 0.9556 0.9330 0.9442 0.9510
0.1522 1.9382 57000 0.2008 0.9449 0.9499 0.9387 0.9443 0.9476
0.1477 1.9722 58000 0.1893 0.9449 0.9389 0.9510 0.9449 0.9413
0.1414 2.0062 59000 0.2214 0.9459 0.9454 0.9459 0.9456 0.9455
0.1263 2.0402 60000 0.2393 0.9464 0.9543 0.9371 0.9456 0.9508
0.1281 2.0742 61000 0.2349 0.9479 0.9461 0.9495 0.9478 0.9468
0.1368 2.1082 62000 0.2080 0.9449 0.9444 0.9448 0.9446 0.9445
0.1299 2.1422 63000 0.2494 0.9421 0.9478 0.9351 0.9414 0.9452
0.1315 2.1762 64000 0.2268 0.9464 0.9515 0.9402 0.9458 0.9492
0.1385 2.2102 65000 0.2346 0.9464 0.9510 0.9407 0.9458 0.9489
0.1314 2.2442 66000 0.2218 0.9428 0.9564 0.9273 0.9416 0.9504
0.1404 2.2782 67000 0.2182 0.9454 0.9368 0.9546 0.9456 0.9403
0.1388 2.3122 68000 0.2175 0.9469 0.9370 0.9577 0.9472 0.9410
0.1318 2.3462 69000 0.2439 0.9423 0.9530 0.9299 0.9413 0.9483
0.1302 2.3802 70000 0.2290 0.9456 0.9472 0.9433 0.9452 0.9464
0.1249 2.4142 71000 0.2438 0.9433 0.9470 0.9387 0.9428 0.9453
0.1424 2.4482 72000 0.2356 0.9423 0.9273 0.9593 0.9430 0.9335
0.1378 2.4822 73000 0.2081 0.9467 0.9473 0.9454 0.9463 0.9469
0.1305 2.5162 74000 0.2488 0.9446 0.9504 0.9376 0.9440 0.9478
0.1257 2.5502 75000 0.2489 0.9454 0.9472 0.9428 0.9450 0.9463
0.1249 2.5842 76000 0.2599 0.9428 0.9623 0.9211 0.9413 0.9538
0.1314 2.6182 77000 0.2259 0.9472 0.9520 0.9412 0.9466 0.9499
0.1301 2.6522 78000 0.2352 0.9472 0.9464 0.9474 0.9469 0.9466
0.1287 2.6863 79000 0.2348 0.9436 0.9484 0.9376 0.9430 0.9462
0.1252 2.7203 80000 0.2225 0.9462 0.9454 0.9464 0.9459 0.9456
0.1258 2.7543 81000 0.2302 0.9454 0.9399 0.9510 0.9454 0.9421
0.1345 2.7883 82000 0.2191 0.9479 0.9479 0.9474 0.9477 0.9478
0.1344 2.8223 83000 0.2374 0.9459 0.9552 0.9351 0.9450 0.9511
0.1219 2.8563 84000 0.2361 0.9454 0.9542 0.9351 0.9445 0.9503
0.1346 2.8903 85000 0.2135 0.9472 0.9568 0.9361 0.9463 0.9526
0.1323 2.9243 86000 0.2245 0.9449 0.9561 0.9320 0.9439 0.9512
0.1341 2.9583 87000 0.2200 0.9444 0.9518 0.9356 0.9436 0.9485
0.1257 2.9923 88000 0.2280 0.9492 0.9508 0.9469 0.9489 0.9500
0.1126 3.0263 89000 0.2499 0.9469 0.9525 0.9402 0.9463 0.95
0.0964 3.0603 90000 0.2556 0.9467 0.9520 0.9402 0.9461 0.9496
0.1104 3.0943 91000 0.2575 0.9451 0.9533 0.9356 0.9443 0.9497
0.105 3.1283 92000 0.2610 0.9469 0.9520 0.9407 0.9463 0.9497
0.1098 3.1623 93000 0.2514 0.9459 0.9431 0.9485 0.9458 0.9442
0.0875 3.1963 94000 0.2900 0.9441 0.9489 0.9381 0.9435 0.9467
0.103 3.2303 95000 0.2538 0.9487 0.9536 0.9428 0.9482 0.9514
0.1037 3.2643 96000 0.2641 0.9436 0.9428 0.9438 0.9433 0.9430
0.1132 3.2983 97000 0.2516 0.9433 0.9456 0.9402 0.9429 0.9445
0.1034 3.3323 98000 0.2816 0.9433 0.9451 0.9407 0.9429 0.9442
0.1157 3.3663 99000 0.2556 0.9467 0.9510 0.9412 0.9461 0.9491
0.1086 3.4003 100000 0.2515 0.9469 0.9506 0.9423 0.9464 0.9489
0.1002 3.4343 101000 0.2601 0.9459 0.9463 0.9448 0.9456 0.9460
0.1065 3.4683 102000 0.2547 0.9464 0.9491 0.9428 0.9460 0.9479
0.1048 3.5023 103000 0.2578 0.9462 0.9510 0.9402 0.9456 0.9488
0.097 3.5363 104000 0.2672 0.9474 0.9497 0.9443 0.9470 0.9486
0.1078 3.5703 105000 0.2575 0.9449 0.9495 0.9392 0.9443 0.9474
0.1043 3.6043 106000 0.2617 0.9462 0.9440 0.9479 0.9460 0.9448
0.0972 3.6383 107000 0.2604 0.9449 0.9462 0.9428 0.9445 0.9455
0.0907 3.6723 108000 0.2635 0.9456 0.9481 0.9423 0.9452 0.9470
0.1044 3.7063 109000 0.2697 0.9449 0.9476 0.9412 0.9444 0.9463
0.1106 3.7404 110000 0.2588 0.9459 0.9500 0.9407 0.9454 0.9482
0.1021 3.7744 111000 0.2723 0.9449 0.9495 0.9392 0.9443 0.9474
0.0958 3.8084 112000 0.2674 0.9449 0.9439 0.9454 0.9446 0.9442
0.1042 3.8424 113000 0.2661 0.9446 0.9430 0.9459 0.9444 0.9435
0.0943 3.8764 114000 0.2673 0.9454 0.9467 0.9433 0.9450 0.9460
0.094 3.9104 115000 0.2670 0.9462 0.9473 0.9443 0.9458 0.9467
0.1024 3.9444 116000 0.2683 0.9459 0.9458 0.9454 0.9456 0.9458
0.0957 3.9784 117000 0.2672 0.9451 0.9448 0.9448 0.9448 0.9448

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
51
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for tom-010/judge_answer___35_deberta_large_enwiki-answerability-2411

Finetuned
(319)
this model