judge_answer___35_deberta_large_enwiki-answerability-2411
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2672
- Accuracy: 0.9451
- Precision: 0.9448
- Recall: 0.9448
- F1: 0.9448
- F0.5: 0.9448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F0.5 |
---|---|---|---|---|---|---|---|---|
0.2671 | 0.0340 | 1000 | 0.2442 | 0.9172 | 0.9081 | 0.9273 | 0.9176 | 0.9119 |
0.2188 | 0.0680 | 2000 | 0.2383 | 0.9241 | 0.9114 | 0.9387 | 0.9248 | 0.9167 |
0.2204 | 0.1020 | 3000 | 0.2081 | 0.9287 | 0.9449 | 0.9098 | 0.9270 | 0.9376 |
0.2101 | 0.1360 | 4000 | 0.2258 | 0.93 | 0.9294 | 0.9299 | 0.9297 | 0.9295 |
0.2087 | 0.1700 | 5000 | 0.2156 | 0.9238 | 0.9566 | 0.8871 | 0.9206 | 0.9419 |
0.2006 | 0.2040 | 6000 | 0.2123 | 0.9331 | 0.9307 | 0.9351 | 0.9329 | 0.9316 |
0.1973 | 0.2380 | 7000 | 0.1832 | 0.9387 | 0.9377 | 0.9392 | 0.9384 | 0.9380 |
0.2055 | 0.2720 | 8000 | 0.2003 | 0.9338 | 0.9399 | 0.9263 | 0.9330 | 0.9371 |
0.2002 | 0.3060 | 9000 | 0.2280 | 0.9351 | 0.9271 | 0.9438 | 0.9354 | 0.9304 |
0.1927 | 0.3400 | 10000 | 0.2304 | 0.9333 | 0.9106 | 0.9603 | 0.9348 | 0.9201 |
0.2001 | 0.3740 | 11000 | 0.1964 | 0.9349 | 0.9395 | 0.9289 | 0.9342 | 0.9374 |
0.1918 | 0.4080 | 12000 | 0.1843 | 0.9356 | 0.9364 | 0.9340 | 0.9352 | 0.9360 |
0.1913 | 0.4420 | 13000 | 0.2252 | 0.9321 | 0.9609 | 0.9 | 0.9295 | 0.9481 |
0.1852 | 0.4760 | 14000 | 0.1806 | 0.9362 | 0.9272 | 0.9459 | 0.9365 | 0.9309 |
0.1796 | 0.5100 | 15000 | 0.2018 | 0.9423 | 0.9482 | 0.9351 | 0.9416 | 0.9456 |
0.1862 | 0.5441 | 16000 | 0.2066 | 0.9344 | 0.9446 | 0.9222 | 0.9332 | 0.9400 |
0.1942 | 0.5781 | 17000 | 0.2123 | 0.9367 | 0.9189 | 0.9572 | 0.9376 | 0.9263 |
0.1864 | 0.6121 | 18000 | 0.1822 | 0.9377 | 0.9564 | 0.9165 | 0.9360 | 0.9482 |
0.1939 | 0.6461 | 19000 | 0.2125 | 0.9359 | 0.9447 | 0.9253 | 0.9349 | 0.9408 |
0.185 | 0.6801 | 20000 | 0.2039 | 0.9364 | 0.9312 | 0.9418 | 0.9364 | 0.9333 |
0.1844 | 0.7141 | 21000 | 0.1742 | 0.9392 | 0.9396 | 0.9381 | 0.9389 | 0.9393 |
0.1818 | 0.7481 | 22000 | 0.1892 | 0.9405 | 0.9407 | 0.9397 | 0.9402 | 0.9405 |
0.1828 | 0.7821 | 23000 | 0.2015 | 0.9379 | 0.9502 | 0.9237 | 0.9367 | 0.9447 |
0.1771 | 0.8161 | 24000 | 0.1985 | 0.94 | 0.9452 | 0.9335 | 0.9393 | 0.9428 |
0.1772 | 0.8501 | 25000 | 0.1672 | 0.9426 | 0.9540 | 0.9294 | 0.9415 | 0.9489 |
0.1859 | 0.8841 | 26000 | 0.1748 | 0.9362 | 0.9126 | 0.9639 | 0.9376 | 0.9225 |
0.189 | 0.9181 | 27000 | 0.1642 | 0.9464 | 0.9427 | 0.95 | 0.9463 | 0.9442 |
0.1774 | 0.9521 | 28000 | 0.1767 | 0.9462 | 0.9369 | 0.9562 | 0.9464 | 0.9407 |
0.1658 | 0.9861 | 29000 | 0.1958 | 0.9431 | 0.9343 | 0.9526 | 0.9433 | 0.9379 |
0.1574 | 1.0201 | 30000 | 0.2119 | 0.9428 | 0.9329 | 0.9536 | 0.9432 | 0.9370 |
0.1588 | 1.0541 | 31000 | 0.1801 | 0.9408 | 0.9548 | 0.9247 | 0.9395 | 0.9486 |
0.1578 | 1.0881 | 32000 | 0.2292 | 0.9418 | 0.9525 | 0.9294 | 0.9408 | 0.9478 |
0.1597 | 1.1221 | 33000 | 0.1971 | 0.9415 | 0.9417 | 0.9407 | 0.9412 | 0.9415 |
0.155 | 1.1561 | 34000 | 0.2235 | 0.9426 | 0.9409 | 0.9438 | 0.9424 | 0.9415 |
0.1594 | 1.1901 | 35000 | 0.1763 | 0.9449 | 0.9425 | 0.9469 | 0.9447 | 0.9434 |
0.1655 | 1.2241 | 36000 | 0.1773 | 0.9444 | 0.9420 | 0.9464 | 0.9442 | 0.9429 |
0.1682 | 1.2581 | 37000 | 0.2021 | 0.94 | 0.9383 | 0.9412 | 0.9398 | 0.9389 |
0.1495 | 1.2921 | 38000 | 0.1954 | 0.9421 | 0.9364 | 0.9479 | 0.9421 | 0.9386 |
0.1567 | 1.3261 | 39000 | 0.2083 | 0.9451 | 0.9481 | 0.9412 | 0.9446 | 0.9467 |
0.1687 | 1.3601 | 40000 | 0.1800 | 0.9415 | 0.9573 | 0.9237 | 0.9402 | 0.9504 |
0.1599 | 1.3941 | 41000 | 0.1816 | 0.9444 | 0.9580 | 0.9289 | 0.9432 | 0.9520 |
0.1655 | 1.4281 | 42000 | 0.1852 | 0.9472 | 0.9423 | 0.9521 | 0.9472 | 0.9443 |
0.1579 | 1.4621 | 43000 | 0.1888 | 0.9446 | 0.9452 | 0.9433 | 0.9443 | 0.9449 |
0.1606 | 1.4961 | 44000 | 0.1880 | 0.9456 | 0.9381 | 0.9536 | 0.9458 | 0.9412 |
0.1522 | 1.5301 | 45000 | 0.2139 | 0.9464 | 0.9464 | 0.9459 | 0.9461 | 0.9463 |
0.1497 | 1.5641 | 46000 | 0.1971 | 0.9436 | 0.9470 | 0.9392 | 0.9431 | 0.9454 |
0.159 | 1.5982 | 47000 | 0.1935 | 0.9418 | 0.9192 | 0.9680 | 0.9430 | 0.9286 |
0.1582 | 1.6322 | 48000 | 0.1841 | 0.9441 | 0.9344 | 0.9546 | 0.9444 | 0.9384 |
0.1505 | 1.6662 | 49000 | 0.2033 | 0.9405 | 0.9322 | 0.9495 | 0.9408 | 0.9356 |
0.1503 | 1.7002 | 50000 | 0.1974 | 0.9454 | 0.9377 | 0.9536 | 0.9456 | 0.9408 |
0.1651 | 1.7342 | 51000 | 0.1995 | 0.9438 | 0.9335 | 0.9552 | 0.9442 | 0.9378 |
0.1544 | 1.7682 | 52000 | 0.1831 | 0.9462 | 0.9325 | 0.9613 | 0.9467 | 0.9381 |
0.1618 | 1.8022 | 53000 | 0.2018 | 0.9413 | 0.9577 | 0.9227 | 0.9399 | 0.9505 |
0.1585 | 1.8362 | 54000 | 0.1897 | 0.9456 | 0.9342 | 0.9582 | 0.9461 | 0.9389 |
0.1604 | 1.8702 | 55000 | 0.1774 | 0.9472 | 0.9478 | 0.9459 | 0.9469 | 0.9474 |
0.1598 | 1.9042 | 56000 | 0.1740 | 0.9451 | 0.9556 | 0.9330 | 0.9442 | 0.9510 |
0.1522 | 1.9382 | 57000 | 0.2008 | 0.9449 | 0.9499 | 0.9387 | 0.9443 | 0.9476 |
0.1477 | 1.9722 | 58000 | 0.1893 | 0.9449 | 0.9389 | 0.9510 | 0.9449 | 0.9413 |
0.1414 | 2.0062 | 59000 | 0.2214 | 0.9459 | 0.9454 | 0.9459 | 0.9456 | 0.9455 |
0.1263 | 2.0402 | 60000 | 0.2393 | 0.9464 | 0.9543 | 0.9371 | 0.9456 | 0.9508 |
0.1281 | 2.0742 | 61000 | 0.2349 | 0.9479 | 0.9461 | 0.9495 | 0.9478 | 0.9468 |
0.1368 | 2.1082 | 62000 | 0.2080 | 0.9449 | 0.9444 | 0.9448 | 0.9446 | 0.9445 |
0.1299 | 2.1422 | 63000 | 0.2494 | 0.9421 | 0.9478 | 0.9351 | 0.9414 | 0.9452 |
0.1315 | 2.1762 | 64000 | 0.2268 | 0.9464 | 0.9515 | 0.9402 | 0.9458 | 0.9492 |
0.1385 | 2.2102 | 65000 | 0.2346 | 0.9464 | 0.9510 | 0.9407 | 0.9458 | 0.9489 |
0.1314 | 2.2442 | 66000 | 0.2218 | 0.9428 | 0.9564 | 0.9273 | 0.9416 | 0.9504 |
0.1404 | 2.2782 | 67000 | 0.2182 | 0.9454 | 0.9368 | 0.9546 | 0.9456 | 0.9403 |
0.1388 | 2.3122 | 68000 | 0.2175 | 0.9469 | 0.9370 | 0.9577 | 0.9472 | 0.9410 |
0.1318 | 2.3462 | 69000 | 0.2439 | 0.9423 | 0.9530 | 0.9299 | 0.9413 | 0.9483 |
0.1302 | 2.3802 | 70000 | 0.2290 | 0.9456 | 0.9472 | 0.9433 | 0.9452 | 0.9464 |
0.1249 | 2.4142 | 71000 | 0.2438 | 0.9433 | 0.9470 | 0.9387 | 0.9428 | 0.9453 |
0.1424 | 2.4482 | 72000 | 0.2356 | 0.9423 | 0.9273 | 0.9593 | 0.9430 | 0.9335 |
0.1378 | 2.4822 | 73000 | 0.2081 | 0.9467 | 0.9473 | 0.9454 | 0.9463 | 0.9469 |
0.1305 | 2.5162 | 74000 | 0.2488 | 0.9446 | 0.9504 | 0.9376 | 0.9440 | 0.9478 |
0.1257 | 2.5502 | 75000 | 0.2489 | 0.9454 | 0.9472 | 0.9428 | 0.9450 | 0.9463 |
0.1249 | 2.5842 | 76000 | 0.2599 | 0.9428 | 0.9623 | 0.9211 | 0.9413 | 0.9538 |
0.1314 | 2.6182 | 77000 | 0.2259 | 0.9472 | 0.9520 | 0.9412 | 0.9466 | 0.9499 |
0.1301 | 2.6522 | 78000 | 0.2352 | 0.9472 | 0.9464 | 0.9474 | 0.9469 | 0.9466 |
0.1287 | 2.6863 | 79000 | 0.2348 | 0.9436 | 0.9484 | 0.9376 | 0.9430 | 0.9462 |
0.1252 | 2.7203 | 80000 | 0.2225 | 0.9462 | 0.9454 | 0.9464 | 0.9459 | 0.9456 |
0.1258 | 2.7543 | 81000 | 0.2302 | 0.9454 | 0.9399 | 0.9510 | 0.9454 | 0.9421 |
0.1345 | 2.7883 | 82000 | 0.2191 | 0.9479 | 0.9479 | 0.9474 | 0.9477 | 0.9478 |
0.1344 | 2.8223 | 83000 | 0.2374 | 0.9459 | 0.9552 | 0.9351 | 0.9450 | 0.9511 |
0.1219 | 2.8563 | 84000 | 0.2361 | 0.9454 | 0.9542 | 0.9351 | 0.9445 | 0.9503 |
0.1346 | 2.8903 | 85000 | 0.2135 | 0.9472 | 0.9568 | 0.9361 | 0.9463 | 0.9526 |
0.1323 | 2.9243 | 86000 | 0.2245 | 0.9449 | 0.9561 | 0.9320 | 0.9439 | 0.9512 |
0.1341 | 2.9583 | 87000 | 0.2200 | 0.9444 | 0.9518 | 0.9356 | 0.9436 | 0.9485 |
0.1257 | 2.9923 | 88000 | 0.2280 | 0.9492 | 0.9508 | 0.9469 | 0.9489 | 0.9500 |
0.1126 | 3.0263 | 89000 | 0.2499 | 0.9469 | 0.9525 | 0.9402 | 0.9463 | 0.95 |
0.0964 | 3.0603 | 90000 | 0.2556 | 0.9467 | 0.9520 | 0.9402 | 0.9461 | 0.9496 |
0.1104 | 3.0943 | 91000 | 0.2575 | 0.9451 | 0.9533 | 0.9356 | 0.9443 | 0.9497 |
0.105 | 3.1283 | 92000 | 0.2610 | 0.9469 | 0.9520 | 0.9407 | 0.9463 | 0.9497 |
0.1098 | 3.1623 | 93000 | 0.2514 | 0.9459 | 0.9431 | 0.9485 | 0.9458 | 0.9442 |
0.0875 | 3.1963 | 94000 | 0.2900 | 0.9441 | 0.9489 | 0.9381 | 0.9435 | 0.9467 |
0.103 | 3.2303 | 95000 | 0.2538 | 0.9487 | 0.9536 | 0.9428 | 0.9482 | 0.9514 |
0.1037 | 3.2643 | 96000 | 0.2641 | 0.9436 | 0.9428 | 0.9438 | 0.9433 | 0.9430 |
0.1132 | 3.2983 | 97000 | 0.2516 | 0.9433 | 0.9456 | 0.9402 | 0.9429 | 0.9445 |
0.1034 | 3.3323 | 98000 | 0.2816 | 0.9433 | 0.9451 | 0.9407 | 0.9429 | 0.9442 |
0.1157 | 3.3663 | 99000 | 0.2556 | 0.9467 | 0.9510 | 0.9412 | 0.9461 | 0.9491 |
0.1086 | 3.4003 | 100000 | 0.2515 | 0.9469 | 0.9506 | 0.9423 | 0.9464 | 0.9489 |
0.1002 | 3.4343 | 101000 | 0.2601 | 0.9459 | 0.9463 | 0.9448 | 0.9456 | 0.9460 |
0.1065 | 3.4683 | 102000 | 0.2547 | 0.9464 | 0.9491 | 0.9428 | 0.9460 | 0.9479 |
0.1048 | 3.5023 | 103000 | 0.2578 | 0.9462 | 0.9510 | 0.9402 | 0.9456 | 0.9488 |
0.097 | 3.5363 | 104000 | 0.2672 | 0.9474 | 0.9497 | 0.9443 | 0.9470 | 0.9486 |
0.1078 | 3.5703 | 105000 | 0.2575 | 0.9449 | 0.9495 | 0.9392 | 0.9443 | 0.9474 |
0.1043 | 3.6043 | 106000 | 0.2617 | 0.9462 | 0.9440 | 0.9479 | 0.9460 | 0.9448 |
0.0972 | 3.6383 | 107000 | 0.2604 | 0.9449 | 0.9462 | 0.9428 | 0.9445 | 0.9455 |
0.0907 | 3.6723 | 108000 | 0.2635 | 0.9456 | 0.9481 | 0.9423 | 0.9452 | 0.9470 |
0.1044 | 3.7063 | 109000 | 0.2697 | 0.9449 | 0.9476 | 0.9412 | 0.9444 | 0.9463 |
0.1106 | 3.7404 | 110000 | 0.2588 | 0.9459 | 0.9500 | 0.9407 | 0.9454 | 0.9482 |
0.1021 | 3.7744 | 111000 | 0.2723 | 0.9449 | 0.9495 | 0.9392 | 0.9443 | 0.9474 |
0.0958 | 3.8084 | 112000 | 0.2674 | 0.9449 | 0.9439 | 0.9454 | 0.9446 | 0.9442 |
0.1042 | 3.8424 | 113000 | 0.2661 | 0.9446 | 0.9430 | 0.9459 | 0.9444 | 0.9435 |
0.0943 | 3.8764 | 114000 | 0.2673 | 0.9454 | 0.9467 | 0.9433 | 0.9450 | 0.9460 |
0.094 | 3.9104 | 115000 | 0.2670 | 0.9462 | 0.9473 | 0.9443 | 0.9458 | 0.9467 |
0.1024 | 3.9444 | 116000 | 0.2683 | 0.9459 | 0.9458 | 0.9454 | 0.9456 | 0.9458 |
0.0957 | 3.9784 | 117000 | 0.2672 | 0.9451 | 0.9448 | 0.9448 | 0.9448 | 0.9448 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.4.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 51
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tom-010/judge_answer___35_deberta_large_enwiki-answerability-2411
Base model
microsoft/deberta-v3-base