File size: 7,498 Bytes
092efe0 0089ab7 092efe0 0089ab7 4384997 092efe0 9893aa5 bcfebc0 9893aa5 092efe0 bcfebc0 092efe0 bcfebc0 092efe0 bcfebc0 092efe0 bcfebc0 0089ab7 c4d3569 0089ab7 f16ab32 0089ab7 3dbabd8 0187783 525e6b8 6e5b68f 0187783 d91dcaa 0089ab7 3dbabd8 0089ab7 918e74e 0089ab7 0f35095 2faae2f f34aa35 2faae2f 3dbabd8 ad66547 9cbcd8e 3dbabd8 3becaca 0187783 3dbabd8 9018bb3 3dbabd8 0089ab7 3dbabd8 ae57306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
datasets:
- natural_instructions
- the_pile
- cot
- Muennighoff/P3
inference:
parameters:
max_new_tokens: 5
temperature: 1.0
top_k: 1
license: apache-2.0
language:
- en
pipeline_tag: text-generation
widget:
-
example_title: "Sentiment Analysis"
text: |-
The task is to label the post's emotion as sadness, joy, love, anger, fear, or surprise.
Input: I'm feeling quite sad and sorry for myself but ill snap out of it soon.
Output: sadness
Input: I am just feeling cranky and blue.
Output: anger
Input: I can have for a treat or if i am feeling festive.
Output:
-
example_title: "Country Currency"
text: |-
Return the currency of the given country.
Input: Switzerland
Output: Swiss Franc
Input: India
Output:
-
example_title: "Tweet Eval Hate"
text: |-
Label whether the following tweet contains hate speech against either immigrants or women. Hate Speech (HS) is commonly defined as any communication that disparages a person or a group on the basis of some characteristic such as race, color, ethnicity, gender, sexual orientation, nationality, religion, or other characteristics.
Possible labels:
1. hate speech
2. not hate speech
Tweet: HOW REFRESHING! In South Korea, there is no such thing as 'political correctness" when it comes to dealing with Muslim refugee wannabes via @user
Label: hate speech
Tweet: New to Twitter-- any men on here know what the process is to get #verified?
Label: not hate speech
Tweet: Dont worry @user you are and will always be the most hysterical woman.
Label:
-
example_title: "Entity Recognition"
text: |-
Extract all the names of people, places, and organizations from the following sentences.
Sentence: Satya Nadella, the CEO of Microsoft, was visiting the Bahamas last May.
Entities: Satya Nadella, Microsoft, Bahamas
Sentence: Pacific Northwest cities include Seattle and Portland, which I have visited with Vikash.
Entities:
-
example_title: "Data Clearning"
text: |-
Format the data into a CSV file:
Input: Jane Doe jane.doe@gmail.com (520) 382 2435
Output: Jane Doe,jane.doe@gmail.com,520-382-2435
Input: Peter Lee (510) 333-2429 email: peter@yahoo.com
Output:
---
<h1 style="font-size: 42px">GPT-JT<h1/>
***<p style="font-size: 24px">Feel free to try out our [Online Demo](https://huggingface.co/spaces/togethercomputer/GPT-JT)!</p>***
# Model Summary
> With a new decentralized training algorithm, we fine-tuned GPT-J (6B) on 3.53 billion tokens, resulting in GPT-JT (6B), a model that outperforms many 100B+ parameter models on classification benchmarks.
We incorporated a collection of open techniques and datasets to build GPT-JT:
- GPT-JT is a fork of [EleutherAI](https://www.eleuther.ai)'s [GPT-J (6B)](https://huggingface.co/EleutherAI/gpt-j-6B);
- We used [UL2](https://github.com/google-research/google-research/tree/master/ul2)'s training objective, allowing the model to see bidirectional context of the prompt;
- The model was trained on a large collection of diverse data, including [Chain-of-Thought (CoT)](https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html), [Public Pool of Prompts (P3) dataset](https://huggingface.co/datasets/bigscience/P3), [Natural-Instructions (NI) dataset](https://github.com/allenai/natural-instructions).
With the help of techniques mentioned above, GPT-JT significantly improves the performance of classification tasks over the original GPT-J, and even outperforms most 100B+ parameter models!
# Quick Start
```python
from transformers import pipeline
pipe = pipeline(model='togethercomputer/GPT-JT-6B-v1')
pipe('''"I love this!" Is it positive? A:''')
```
or
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v1")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-JT-6B-v1")
```
# License
The weights of GPT-JT-6B-v1 are licensed under version 2.0 of the Apache License.
# Training Details
## UL2 Training Objective
We train GPT-JT using UL2 training objective [1][2].
The original GPT-J uses causal mask (as shown below left) for autoregressive generation. So for each token, it can only see its previous context.
In order to fully leverage the context information, we continue to train GPT-J with UL2 training objectives, and uses causal mask with prefix (as shown below right) -- using bidirectional attention for the prompt / input and causal attention for token generation.
Intuitively, being able to see context bidirectionally might improve downstream tasks that require this information.
$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
$$
Furthermore, we leverage a large collection of data, including [Natural-Instructions](https://github.com/allenai/natural-instructions), [P3](https://huggingface.co/datasets/Muennighoff/P3), [MMLU-COT](https://github.com/jasonwei20/flan-2/blob/main/mmlu-cot.json), and [the Pile](https://huggingface.co/datasets/the_pile)
Specifically, we first conduct training for 2.62 billion tokens using the UL2 loss on the Pile, followed by 0.92 billion tokens with a mixture of the above datasets: 5% of COT, 20% of P3, 20% of NI, and 55% of the Pile.
## Hyperparameters
We used AdamW with a learning rate of 1e-5 and global batch size of 64 (16 for each data parallel worker).
We used mix-precision training where the activation is in FP16 while the optimizer states are kept in FP32.
We use both data parallelism and pipeline parallelism to conduct training.
During training, we truncate the input sequence to 2048 tokens, and for input sequence that contains less than 2048 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
## Infrastructure
We used [the Together Research Computer](https://together.xyz/) to conduct training.
# References
[1]: Tay, Yi, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, and Donald Metzler. "Unifying Language Learning Paradigms." arXiv preprint arXiv:2205.05131 (2022).
[2]: Tay, Yi, Jason Wei, Hyung Won Chung, Vinh Q. Tran, David R. So, Siamak Shakeri, Xavier Garcia et al. "Transcending scaling laws with 0.1% extra compute." arXiv preprint arXiv:2210.11399 (2022).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_togethercomputer__GPT-JT-6B-v1)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 37.6 |
| ARC (25-shot) | 40.87 |
| HellaSwag (10-shot) | 67.15 |
| MMLU (5-shot) | 47.19 |
| TruthfulQA (0-shot) | 37.07 |
| Winogrande (5-shot) | 65.27 |
| GSM8K (5-shot) | 1.21 |
| DROP (3-shot) | 4.42 |
|