Text Generation
Transformers
PyTorch
English
gptj
Inference Endpoints
juewang commited on
Commit
3dbabd8
·
1 Parent(s): 9018bb3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -6
README.md CHANGED
@@ -77,6 +77,7 @@ widget:
77
  <h1 style="font-size: 42px">GPT-JT<h1/>
78
 
79
  # Model Summary
 
80
  We present GPT-JT, a fork of GPT-6B, trained on 3.53 billion tokens, that outperforms most 100B+ parameter models at classification.
81
  GPT-JT was trained with a new decentralized algorithm on computers networked with 1Gbps interconnect, in contrast with typical 100Gbps-1.6Tbps data center networks.
82
  GPT-JT is a bidirectional dense model, which processes the prompt with bidirectional attention to fully leverage the context information, and uses causal attention only for token generation.
@@ -84,6 +85,7 @@ GPT-JT is a bidirectional dense model, which processes the prompt with bidirecti
84
  ***Please try out our [Online Demo](https://huggingface.co/spaces/togethercomputer/GPT-JT)!***
85
 
86
  # Quick Start
 
87
  ```python
88
  from transformers import pipeline
89
  pipe = pipeline(model='togethercomputer/GPT-JT-6B-v1')
@@ -98,20 +100,55 @@ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v1")
98
  model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-JT-6B-v1")
99
  ```
100
 
101
- # Training Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  We fine-tune [GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) on NI, P3, COT, the pile data.
103
  - [Natural-Instructions](https://github.com/allenai/natural-instructions)
104
  - [P3](https://huggingface.co/datasets/Muennighoff/P3)
105
  - [MMLU-COT](https://github.com/jasonwei20/flan-2/blob/main/mmlu-cot.json)
106
  - [the pile](https://huggingface.co/datasets/the_pile)
107
 
108
- We first conduct training for 2.62 billion tokens using the UL2 loss, followed by 0.92 billion tokens with a mixture of the above datasets: 5% of COT, 20% of P3, 20% of NI, and 55% of the Pile.
 
 
109
 
110
- # Hyperparameters
111
- We used AdamW with a learning rate of 1e-5 and global batch size of 64.
112
  We used mix-precision training where the activation is in FP16 while the optimizer states are kept in FP32.
113
  We use both data parallelism and pipeline parallelism to conduct training.
114
  During training, we truncate the input sequence to 2048 tokens, and for input sequence that contains less than 2048 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
115
 
116
- # Infrastructure
117
- We used [the Together Research Computer](https://together.xyz/) to conduct training.
 
 
 
 
 
 
 
 
77
  <h1 style="font-size: 42px">GPT-JT<h1/>
78
 
79
  # Model Summary
80
+
81
  We present GPT-JT, a fork of GPT-6B, trained on 3.53 billion tokens, that outperforms most 100B+ parameter models at classification.
82
  GPT-JT was trained with a new decentralized algorithm on computers networked with 1Gbps interconnect, in contrast with typical 100Gbps-1.6Tbps data center networks.
83
  GPT-JT is a bidirectional dense model, which processes the prompt with bidirectional attention to fully leverage the context information, and uses causal attention only for token generation.
 
85
  ***Please try out our [Online Demo](https://huggingface.co/spaces/togethercomputer/GPT-JT)!***
86
 
87
  # Quick Start
88
+
89
  ```python
90
  from transformers import pipeline
91
  pipe = pipeline(model='togethercomputer/GPT-JT-6B-v1')
 
100
  model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-JT-6B-v1")
101
  ```
102
 
103
+ # Training Details
104
+
105
+ ## UL2 Training Objective
106
+
107
+ We train GPT-J using UL2 training objective [1][2].
108
+ The usual GPT model, including GPT-J, uses the lower left causal mask to do autoregressive generation, so for each token, it can only see the context information before itself.
109
+ In order to fully leverage the context information, we continue training with UL2 training objectives, and uses the lower right causal mask with prefix -- using bidirectional attention for the prompt and causal attention for token generation.
110
+
111
+ $$
112
+ \begin{bmatrix}
113
+ 1 & 0 & 0 & 0 & 0 \\
114
+ 1 & 1 & 0 & 0 & 0 \\
115
+ 1 & 1 & 1 & 0 & 0 \\
116
+ 1 & 1 & 1 & 1 & 0 \\
117
+ 1 & 1 & 1 & 1 & 1
118
+ \end{bmatrix}
119
+
120
+ \begin{bmatrix}
121
+ 1 & 1 & 1 & 0 & 0 \\
122
+ 1 & 1 & 1 & 0 & 0 \\
123
+ 1 & 1 & 1 & 0 & 0 \\
124
+ 1 & 1 & 1 & 1 & 0 \\
125
+ 1 & 1 & 1 & 1 & 1
126
+ \end{bmatrix}
127
+ $$
128
+
129
+ ## Data
130
+
131
  We fine-tune [GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) on NI, P3, COT, the pile data.
132
  - [Natural-Instructions](https://github.com/allenai/natural-instructions)
133
  - [P3](https://huggingface.co/datasets/Muennighoff/P3)
134
  - [MMLU-COT](https://github.com/jasonwei20/flan-2/blob/main/mmlu-cot.json)
135
  - [the pile](https://huggingface.co/datasets/the_pile)
136
 
137
+ We first conduct training for 2.62 billion tokens using the UL2 loss on the Pile, followed by 0.92 billion tokens with a mixture of the above datasets: 5% of COT, 20% of P3, 20% of NI, and 55% of the Pile.
138
+
139
+ ## Hyperparameters
140
 
141
+ We used AdamW with a learning rate of 1e-5 and global batch size of 64 (16 for each data parallel worker).
 
142
  We used mix-precision training where the activation is in FP16 while the optimizer states are kept in FP32.
143
  We use both data parallelism and pipeline parallelism to conduct training.
144
  During training, we truncate the input sequence to 2048 tokens, and for input sequence that contains less than 2048 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
145
 
146
+ ## Infrastructure
147
+
148
+ We used [the Together Research Computer](https://together.xyz/) to conduct training.
149
+
150
+ # References
151
+
152
+ [1]: Tay, Yi, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, and Donald Metzler. "Unifying Language Learning Paradigms." arXiv preprint arXiv:2205.05131 (2022).
153
+
154
+ [2]: Tay, Yi, Jason Wei, Hyung Won Chung, Vinh Q. Tran, David R. So, Siamak Shakeri, Xavier Garcia et al. "Transcending scaling laws with 0.1% extra compute." arXiv preprint arXiv:2210.11399 (2022).