Model card for resnetv2_101x3_bit.goog_in21k
A ResNet-V2-BiT (Big Transfer w/ pre-activation ResNet) image classification model. Trained on ImageNet-21k by paper authors.
This model uses:
- Group Normalization (GN) in combination with Weight Standardization (WS) instead of Batch Normalization (BN)..
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 516.0
- GMACs: 71.4
- Activations (M): 48.7
- Image size: 224 x 224
- Papers:
- Big Transfer (BiT): General Visual Representation Learning: https://arxiv.org/abs/1912.11370
- Identity Mappings in Deep Residual Networks: https://arxiv.org/abs/1603.05027
- Dataset: ImageNet-21k
- Original: https://github.com/google-research/big_transfer
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('resnetv2_101x3_bit.goog_in21k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnetv2_101x3_bit.goog_in21k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 192, 112, 112])
# torch.Size([1, 768, 56, 56])
# torch.Size([1, 1536, 28, 28])
# torch.Size([1, 3072, 14, 14])
# torch.Size([1, 6144, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnetv2_101x3_bit.goog_in21k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 6144, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@inproceedings{Kolesnikov2019BigT,
title={Big Transfer (BiT): General Visual Representation Learning},
author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby},
booktitle={European Conference on Computer Vision},
year={2019}
}
@article{He2016,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Identity Mappings in Deep Residual Networks},
journal = {arXiv preprint arXiv:1603.05027},
year = {2016}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 97
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.