Model card for regnety_016.pycls_in1k
A RegNetY-1.6GF image classification model. Pretrained on ImageNet-1k by paper authors.
The timm
RegNet implementation includes a number of enhancements not present in other implementations, including:
- stochastic depth
- gradient checkpointing
- layer-wise LR decay
- configurable output stride (dilation)
- configurable activation and norm layers
- option for a pre-activation bottleneck block used in RegNetV variant
- only known RegNetZ model definitions with pretrained weights
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 11.2
- GMACs: 1.6
- Activations (M): 8.0
- Image size: 224 x 224
- Papers:
- Designing Network Design Spaces: https://arxiv.org/abs/2003.13678
- Dataset: ImageNet-1k
- Original: https://github.com/facebookresearch/pycls
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('regnety_016.pycls_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'regnety_016.pycls_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 112, 112])
# torch.Size([1, 48, 56, 56])
# torch.Size([1, 120, 28, 28])
# torch.Size([1, 336, 14, 14])
# torch.Size([1, 888, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'regnety_016.pycls_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 888, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
For the comparison summary below, the ra_in1k, ra3_in1k, ch_in1k, sw_*, and lion_* tagged weights are trained in timm
.
model | img_size | top1 | top5 | param_count | gmacs | macts |
---|---|---|---|---|---|---|
regnety_1280.swag_ft_in1k | 384 | 88.228 | 98.684 | 644.81 | 374.99 | 210.2 |
regnety_320.swag_ft_in1k | 384 | 86.84 | 98.364 | 145.05 | 95.0 | 88.87 |
regnety_160.swag_ft_in1k | 384 | 86.024 | 98.05 | 83.59 | 46.87 | 67.67 |
regnety_160.sw_in12k_ft_in1k | 288 | 86.004 | 97.83 | 83.59 | 26.37 | 38.07 |
regnety_1280.swag_lc_in1k | 224 | 85.996 | 97.848 | 644.81 | 127.66 | 71.58 |
regnety_160.lion_in12k_ft_in1k | 288 | 85.982 | 97.844 | 83.59 | 26.37 | 38.07 |
regnety_160.sw_in12k_ft_in1k | 224 | 85.574 | 97.666 | 83.59 | 15.96 | 23.04 |
regnety_160.lion_in12k_ft_in1k | 224 | 85.564 | 97.674 | 83.59 | 15.96 | 23.04 |
regnety_120.sw_in12k_ft_in1k | 288 | 85.398 | 97.584 | 51.82 | 20.06 | 35.34 |
regnety_2560.seer_ft_in1k | 384 | 85.15 | 97.436 | 1282.6 | 747.83 | 296.49 |
regnetz_e8.ra3_in1k | 320 | 85.036 | 97.268 | 57.7 | 15.46 | 63.94 |
regnety_120.sw_in12k_ft_in1k | 224 | 84.976 | 97.416 | 51.82 | 12.14 | 21.38 |
regnety_320.swag_lc_in1k | 224 | 84.56 | 97.446 | 145.05 | 32.34 | 30.26 |
regnetz_040_h.ra3_in1k | 320 | 84.496 | 97.004 | 28.94 | 6.43 | 37.94 |
regnetz_e8.ra3_in1k | 256 | 84.436 | 97.02 | 57.7 | 9.91 | 40.94 |
regnety_1280.seer_ft_in1k | 384 | 84.432 | 97.092 | 644.81 | 374.99 | 210.2 |
regnetz_040.ra3_in1k | 320 | 84.246 | 96.93 | 27.12 | 6.35 | 37.78 |
regnetz_d8.ra3_in1k | 320 | 84.054 | 96.992 | 23.37 | 6.19 | 37.08 |
regnetz_d8_evos.ch_in1k | 320 | 84.038 | 96.992 | 23.46 | 7.03 | 38.92 |
regnetz_d32.ra3_in1k | 320 | 84.022 | 96.866 | 27.58 | 9.33 | 37.08 |
regnety_080.ra3_in1k | 288 | 83.932 | 96.888 | 39.18 | 13.22 | 29.69 |
regnety_640.seer_ft_in1k | 384 | 83.912 | 96.924 | 281.38 | 188.47 | 124.83 |
regnety_160.swag_lc_in1k | 224 | 83.778 | 97.286 | 83.59 | 15.96 | 23.04 |
regnetz_040_h.ra3_in1k | 256 | 83.776 | 96.704 | 28.94 | 4.12 | 24.29 |
regnetv_064.ra3_in1k | 288 | 83.72 | 96.75 | 30.58 | 10.55 | 27.11 |
regnety_064.ra3_in1k | 288 | 83.718 | 96.724 | 30.58 | 10.56 | 27.11 |
regnety_160.deit_in1k | 288 | 83.69 | 96.778 | 83.59 | 26.37 | 38.07 |
regnetz_040.ra3_in1k | 256 | 83.62 | 96.704 | 27.12 | 4.06 | 24.19 |
regnetz_d8.ra3_in1k | 256 | 83.438 | 96.776 | 23.37 | 3.97 | 23.74 |
regnetz_d32.ra3_in1k | 256 | 83.424 | 96.632 | 27.58 | 5.98 | 23.74 |
regnetz_d8_evos.ch_in1k | 256 | 83.36 | 96.636 | 23.46 | 4.5 | 24.92 |
regnety_320.seer_ft_in1k | 384 | 83.35 | 96.71 | 145.05 | 95.0 | 88.87 |
regnetv_040.ra3_in1k | 288 | 83.204 | 96.66 | 20.64 | 6.6 | 20.3 |
regnety_320.tv2_in1k | 224 | 83.162 | 96.42 | 145.05 | 32.34 | 30.26 |
regnety_080.ra3_in1k | 224 | 83.16 | 96.486 | 39.18 | 8.0 | 17.97 |
regnetv_064.ra3_in1k | 224 | 83.108 | 96.458 | 30.58 | 6.39 | 16.41 |
regnety_040.ra3_in1k | 288 | 83.044 | 96.5 | 20.65 | 6.61 | 20.3 |
regnety_064.ra3_in1k | 224 | 83.02 | 96.292 | 30.58 | 6.39 | 16.41 |
regnety_160.deit_in1k | 224 | 82.974 | 96.502 | 83.59 | 15.96 | 23.04 |
regnetx_320.tv2_in1k | 224 | 82.816 | 96.208 | 107.81 | 31.81 | 36.3 |
regnety_032.ra_in1k | 288 | 82.742 | 96.418 | 19.44 | 5.29 | 18.61 |
regnety_160.tv2_in1k | 224 | 82.634 | 96.22 | 83.59 | 15.96 | 23.04 |
regnetz_c16_evos.ch_in1k | 320 | 82.634 | 96.472 | 13.49 | 3.86 | 25.88 |
regnety_080_tv.tv2_in1k | 224 | 82.592 | 96.246 | 39.38 | 8.51 | 19.73 |
regnetx_160.tv2_in1k | 224 | 82.564 | 96.052 | 54.28 | 15.99 | 25.52 |
regnetz_c16.ra3_in1k | 320 | 82.51 | 96.358 | 13.46 | 3.92 | 25.88 |
regnetv_040.ra3_in1k | 224 | 82.44 | 96.198 | 20.64 | 4.0 | 12.29 |
regnety_040.ra3_in1k | 224 | 82.304 | 96.078 | 20.65 | 4.0 | 12.29 |
regnetz_c16.ra3_in1k | 256 | 82.16 | 96.048 | 13.46 | 2.51 | 16.57 |
regnetz_c16_evos.ch_in1k | 256 | 81.936 | 96.15 | 13.49 | 2.48 | 16.57 |
regnety_032.ra_in1k | 224 | 81.924 | 95.988 | 19.44 | 3.2 | 11.26 |
regnety_032.tv2_in1k | 224 | 81.77 | 95.842 | 19.44 | 3.2 | 11.26 |
regnetx_080.tv2_in1k | 224 | 81.552 | 95.544 | 39.57 | 8.02 | 14.06 |
regnetx_032.tv2_in1k | 224 | 80.924 | 95.27 | 15.3 | 3.2 | 11.37 |
regnety_320.pycls_in1k | 224 | 80.804 | 95.246 | 145.05 | 32.34 | 30.26 |
regnetz_b16.ra3_in1k | 288 | 80.712 | 95.47 | 9.72 | 2.39 | 16.43 |
regnety_016.tv2_in1k | 224 | 80.66 | 95.334 | 11.2 | 1.63 | 8.04 |
regnety_120.pycls_in1k | 224 | 80.37 | 95.12 | 51.82 | 12.14 | 21.38 |
regnety_160.pycls_in1k | 224 | 80.288 | 94.964 | 83.59 | 15.96 | 23.04 |
regnetx_320.pycls_in1k | 224 | 80.246 | 95.01 | 107.81 | 31.81 | 36.3 |
regnety_080.pycls_in1k | 224 | 79.882 | 94.834 | 39.18 | 8.0 | 17.97 |
regnetz_b16.ra3_in1k | 224 | 79.872 | 94.974 | 9.72 | 1.45 | 9.95 |
regnetx_160.pycls_in1k | 224 | 79.862 | 94.828 | 54.28 | 15.99 | 25.52 |
regnety_064.pycls_in1k | 224 | 79.716 | 94.772 | 30.58 | 6.39 | 16.41 |
regnetx_120.pycls_in1k | 224 | 79.592 | 94.738 | 46.11 | 12.13 | 21.37 |
regnetx_016.tv2_in1k | 224 | 79.44 | 94.772 | 9.19 | 1.62 | 7.93 |
regnety_040.pycls_in1k | 224 | 79.23 | 94.654 | 20.65 | 4.0 | 12.29 |
regnetx_080.pycls_in1k | 224 | 79.198 | 94.55 | 39.57 | 8.02 | 14.06 |
regnetx_064.pycls_in1k | 224 | 79.064 | 94.454 | 26.21 | 6.49 | 16.37 |
regnety_032.pycls_in1k | 224 | 78.884 | 94.412 | 19.44 | 3.2 | 11.26 |
regnety_008_tv.tv2_in1k | 224 | 78.654 | 94.388 | 6.43 | 0.84 | 5.42 |
regnetx_040.pycls_in1k | 224 | 78.482 | 94.24 | 22.12 | 3.99 | 12.2 |
regnetx_032.pycls_in1k | 224 | 78.178 | 94.08 | 15.3 | 3.2 | 11.37 |
regnety_016.pycls_in1k | 224 | 77.862 | 93.73 | 11.2 | 1.63 | 8.04 |
regnetx_008.tv2_in1k | 224 | 77.302 | 93.672 | 7.26 | 0.81 | 5.15 |
regnetx_016.pycls_in1k | 224 | 76.908 | 93.418 | 9.19 | 1.62 | 7.93 |
regnety_008.pycls_in1k | 224 | 76.296 | 93.05 | 6.26 | 0.81 | 5.25 |
regnety_004.tv2_in1k | 224 | 75.592 | 92.712 | 4.34 | 0.41 | 3.89 |
regnety_006.pycls_in1k | 224 | 75.244 | 92.518 | 6.06 | 0.61 | 4.33 |
regnetx_008.pycls_in1k | 224 | 75.042 | 92.342 | 7.26 | 0.81 | 5.15 |
regnetx_004_tv.tv2_in1k | 224 | 74.57 | 92.184 | 5.5 | 0.42 | 3.17 |
regnety_004.pycls_in1k | 224 | 74.018 | 91.764 | 4.34 | 0.41 | 3.89 |
regnetx_006.pycls_in1k | 224 | 73.862 | 91.67 | 6.2 | 0.61 | 3.98 |
regnetx_004.pycls_in1k | 224 | 72.38 | 90.832 | 5.16 | 0.4 | 3.14 |
regnety_002.pycls_in1k | 224 | 70.282 | 89.534 | 3.16 | 0.2 | 2.17 |
regnetx_002.pycls_in1k | 224 | 68.752 | 88.556 | 2.68 | 0.2 | 2.16 |
Citation
@InProceedings{Radosavovic2020,
title = {Designing Network Design Spaces},
author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r},
booktitle = {CVPR},
year = {2020}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 165
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.