timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers

Model card for hgnetv2_b6.ssld_stage1_in22k_in1k

A HGNet-V2 (High Performance GPU Net) image classification model. Trained by model authors on mined ImageNet-22k and ImageNet-1k using SSLD distillation.

Please see details at https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Params (M): 75.3
    • GMACs: 16.9
    • Activations (M): 21.2
    • Image size: train = 224 x 224, test = 288 x 288
  • Pretrain Dataset: ImageNet-22k
  • Dataset: ImageNet-1k
  • Papers:
    • Model paper unknown: TBD
    • Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones: https://arxiv.org/abs/2103.05959
  • Original: https://github.com/PaddlePaddle/PaddleClas

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('hgnetv2_b6.ssld_stage1_in22k_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hgnetv2_b6.ssld_stage1_in22k_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 192, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hgnetv2_b6.ssld_stage1_in22k_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1

model top1 top1_err top5 top5_err param_count img_size
hgnetv2_b6.ssld_stage2_ft_in1k 86.36 13.64 97.934 2.066 75.26 288
hgnetv2_b6.ssld_stage1_in22k_in1k 86.294 13.706 97.948 2.052 75.26 288
hgnetv2_b6.ssld_stage2_ft_in1k 86.204 13.796 97.81 2.19 75.26 224
hgnetv2_b6.ssld_stage1_in22k_in1k 86.028 13.972 97.804 2.196 75.26 224
hgnet_base.ssld_in1k 85.474 14.526 97.632 2.368 71.58 288
hgnetv2_b5.ssld_stage2_ft_in1k 85.146 14.854 97.612 2.388 39.57 288
hgnetv2_b5.ssld_stage1_in22k_in1k 84.928 15.072 97.514 2.486 39.57 288
hgnet_base.ssld_in1k 84.912 15.088 97.342 2.658 71.58 224
hgnetv2_b5.ssld_stage2_ft_in1k 84.808 15.192 97.3 2.7 39.57 224
hgnetv2_b5.ssld_stage1_in22k_in1k 84.458 15.542 97.22 2.78 39.57 224
hgnet_small.ssld_in1k 84.376 15.624 97.128 2.872 24.36 288
hgnetv2_b4.ssld_stage2_ft_in1k 83.912 16.088 97.06 2.94 19.8 288
hgnet_small.ssld_in1k 83.808 16.192 96.848 3.152 24.36 224
hgnetv2_b4.ssld_stage2_ft_in1k 83.694 16.306 96.786 3.214 19.8 224
hgnetv2_b3.ssld_stage2_ft_in1k 83.58 16.42 96.81 3.19 16.29 288
hgnetv2_b4.ssld_stage1_in22k_in1k 83.45 16.55 96.92 3.08 19.8 288
hgnetv2_b3.ssld_stage1_in22k_in1k 83.116 16.884 96.712 3.288 16.29 288
hgnetv2_b3.ssld_stage2_ft_in1k 82.916 17.084 96.364 3.636 16.29 224
hgnetv2_b4.ssld_stage1_in22k_in1k 82.892 17.108 96.632 3.368 19.8 224
hgnetv2_b3.ssld_stage1_in22k_in1k 82.588 17.412 96.38 3.62 16.29 224
hgnet_tiny.ssld_in1k 82.524 17.476 96.514 3.486 14.74 288
hgnetv2_b2.ssld_stage2_ft_in1k 82.346 17.654 96.394 3.606 11.22 288
hgnet_small.paddle_in1k 82.222 17.778 96.22 3.78 24.36 288
hgnet_tiny.ssld_in1k 81.938 18.062 96.114 3.886 14.74 224
hgnetv2_b2.ssld_stage2_ft_in1k 81.578 18.422 95.896 4.104 11.22 224
hgnetv2_b2.ssld_stage1_in22k_in1k 81.46 18.54 96.01 3.99 11.22 288
hgnet_small.paddle_in1k 81.358 18.642 95.832 4.168 24.36 224
hgnetv2_b2.ssld_stage1_in22k_in1k 80.75 19.25 95.498 4.502 11.22 224
hgnet_tiny.paddle_in1k 80.64 19.36 95.54 4.46 14.74 288
hgnetv2_b1.ssld_stage2_ft_in1k 79.904 20.096 95.148 4.852 6.34 288
hgnet_tiny.paddle_in1k 79.894 20.106 95.052 4.948 14.74 224
hgnetv2_b1.ssld_stage1_in22k_in1k 79.048 20.952 94.882 5.118 6.34 288
hgnetv2_b1.ssld_stage2_ft_in1k 78.872 21.128 94.492 5.508 6.34 224
hgnetv2_b0.ssld_stage2_ft_in1k 78.586 21.414 94.388 5.612 6.0 288
hgnetv2_b1.ssld_stage1_in22k_in1k 78.05 21.95 94.182 5.818 6.34 224
hgnetv2_b0.ssld_stage1_in22k_in1k 78.026 21.974 94.242 5.758 6.0 288
hgnetv2_b0.ssld_stage2_ft_in1k 77.342 22.658 93.786 6.214 6.0 224
hgnetv2_b0.ssld_stage1_in22k_in1k 76.844 23.156 93.612 6.388 6.0 224

Citation

@article{cui2021beyond,
  title={Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones},
  author={Cui, Cheng and Guo, Ruoyu and Du, Yuning and He, Dongliang and Li, Fu and Wu, Zewu and Liu, Qiwen and Wen, Shilei and Huang, Jizhou and Hu, Xiaoguang and others},
  journal={arXiv preprint arXiv:2103.05959},
  year={2021}
}
Downloads last month
102
Safetensors
Model size
75.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train timm/hgnetv2_b6.ssld_stage1_in22k_in1k